
A STATISTICAL PROCESSOR FOR ANALYZING SIMULATIONS MADE USING

THE MODULAR FINITE-DIFFERENCE GROUND-WATER FLOW MODEL

by Jonathon C. Scott

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 89-4159

Oklahoma City, Oklahoma

1990

DEPARTMENT OF THE INTERIOR

MANUEL LUJAN, JR., Secretary

UNITED STATES GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information
write to:

District Chief
U.S. Geological Survey
215 Dean A. MeGee, Room 621
Oklahoma City, Oklahoma 73102

Copies of this report can
be purchased from:

Bboks and Open-File Reports
U.S. Geological Survey
Federal Center, Bldg. 810,
Box 25425

Denver, Colorado 80225

CONTENTS

Page

Abstract ... 1
Chapter 1. Introduction ... 1
Purpose .. 1
How to use this report ... 2
Organization of this report .. 2

Chapter 2. Program design ... 3
Hardware and software requirements 3
Structure of the program ... 6
Space allocation ... 6
Command file ... 8
Modular Model data arrays .. 10
Auxiliary data arrays .. 12
Data-set names ... 13
Subsetting data arrays ... 16

Chapter 3. Use of the program ... 20
General comments ... 20
Command descriptions ... 21
Documenting the command file (****) 21
Title lines (TITL) ... 22
Reading data arrays (READ) ... 24
Printing data arrays (PRIN) .. 29
Writing data arrays (WRIT) ... 35
Descriptive statistics (STAT) 38
Frequency analysis (HIST) .. 41
Comparison of data arrays (COMP) 45
Mathematical operations (MATH) 49
Subsetting computed heads (HEAD) 53
Resetting the model-boundary array (REBO) 55
Defining layer thickness (THIC) 57
Slicing data arrays (SLIC) ... 59
Computation of flow vectors (VECT) 62

Chapter 4. Sample applications of the program 71
General comments^................................. 71
Checking data input to the model 71

Comparing starting head to land surface altitude 71
Comparing aquifer top and bottom elevations 73
Comparing aquifer top and bottom to land surface altitude 73
Finding pumpage or recharge at inactive and constant head nodes 74
Checking the range of the storage coefficient values 74

Analyzing the results of simulations 75
Summarizing drawdown ... 75
Summarizing drawdown within a specific area 76
Comparing the results of several simulations 77
Computing change of volume of water in storage 78
Computing the effects of well pumpage on stream discharge 79

Graphing the results of simulations 80
Graphing computed and observed heads 81
Displaying flow vectors .. 87

111

	Page

Chapter 5. Program documentation 95
Discussion ... 95
Informative and error messages 96
Run-fatal errors ... 96
Command-fatal errors ... 99
Warnings ... 106

References ... 109
Attachments .. 110
Appendix. Abbreviated input instructions 214

ILLUSTRATIONS

Figure 1.

2.
3.
4.

5.

6.

7.

8.

9.

Page

Movement of data arrays on the stack as new data arrays
are added .. 14

Examples of the application of masking to a data array 19
Modular model statistical processor mask-field components ... 30
Cartesian reference frames of the
orientations

Two possible viewing orientations
slice

three viewing

for a sample oblique
63

65
Grid cells and vector components used for the calculation
of flow vectors on a sample oblique slice 66
Computation of orthogonal vector components for a
grid cell .. 67
Sample flow vectors computed by the modular model
statistical processor ...'................................... 89

Locations of registration points prior to conversion to
a map coordinate system1............................ 91

IV

TABLES

Table 1. Routines containing inserted blocks of programming
statements ... 4

2. 1MSL subroutines used by the Modular Model Statistical
Processor .. 5

3. An algorithm for estimating the size of the "Z" array needed
for a given ground-water simulation 7

4. Commands accepted by the Modular Model Statistical
Processor .. 9

5. Modular Model data arrays read and available to a user of
the Modular Model Statistical Processor 10

6. Modular Model data read and used internally by the Modular
Model Statistical Processor 11

7. Reserved data-set names for the Modular Model Statistical
Processor .. 15

8. Explanation of the model-boundary mask-key field of the
Modular Model Statistical Processor 17

9. Print-format codes for the WRIT and PRIN commands of the
Modular Model Statistical Processor 32

10. Subroutines of the Modular Model Statistical Processor that
can print generic input error and end-of-file messages 97

ATTACHMENTS

Page

Attachment A. Blocks of code inserted into the modular model
statistical processor program 110

B. Modular model statistical processor program listing Ill
C. Vector program listing 210

A STATISTICAL PROCESSOR FOR ANALYZING SIMULATIONS MADE USING

THE MODULAR FINITE-DIFFERENCE GROUND-WATER FLOW MODEL

By Jonathon C. Scott

ABSTRACT

Many hydro logic studies of ground-water systems are conducted using a
digital computer model as an aid to understanding the flow system. One of
the most commonly used ground-water modeling programs is the Modular
Three-Dimensional Finite-Difference Ground-water Flow Model (Modular Model)
by McDonald and Harbaugh. This report presents a computer program to
summarize the data input to and output from the Modular Model. The program
is named the Modular Model Statistical Processor and is designed to be run
following the Modular Model.

The Modular Model Statistical Processor provides ground-water modelers
with the capabilities to easily read data input to and output from the
Modular Model, calculate descriptive statistics, generate histograms, perform
logical tests using relational operators, calculate data arrays using
arithmetic operators, and calculate flow vectors for use in a graphical-
display program.

CHAPTER 1
INTRODUCTION

Purpose

This report was prepared to aid ground-water modelers in their
understanding of the results of ground-water flow simulations made using the
Modular Three-Dimensional Finite-Difference Ground-water Flow Model (Modular
Model) by McDonald and Harbaugh (1988). In the decade preceding publication
of this report, the U.S. Geological Survey conducted a series of Regional
Aquifer Systems Analysis (RASA) studies to evaluate the Nation's major
aquifer systems (U.S. Geological Survey, 1980, p. 92). Each RASA study
included the use of a digital computer ground-water flow model to complement
the understanding of the ground-water flow system. The most commonly used
ground-water modeling program has been the Modular Model.

Currently, the Survey is conducting several pilot studies before
performing a NAtional Water Quality Assessment (NAWQA). Several of the NAWQA
projects are studying ground-water flow systems and are using the Modular
Model as a tool for testing hypotheses regarding the natural ground-water
flow paths. The present report will help ground-water hydrologists to
visualize these potential ground-water flow paths.

Recently, computerized methods for preparing the data input to the
Modular Model have become available. An interactive data preprocessing
program has been written (G.D. Rogers, written commun.,1988), and geographic
information systems (CIS) have been used (Kernodle and Philip, 1988).
Because arrays of data values that are used as input to the Modular Model are
being computed rather than chosen and typed, a tool is needed to assist
modelers in checking the logical consistency of the resulting data arrays.
Furthermore, because less time is required to prepare the data input to the
Modular Model, modelers have more freedom to examine the results of a
simulation, check hypotheses regarding the flow system, and determine the
adequacy of a simulation. This report describes the Modular Model
Statistical Processor (MMSP), a computer program that can be used to
facilitate the analysis of ground-water flow simulations made using the
Modular Model.

How to Use This Report

The purpose of this report is to describe and document the MMSP program.
Throughout this report, it is assumed that the reader is familiar with the
documentation for the Modular Model. Much of the material presented in this
report complements information presented in "A Modular Three-Dimensional
Finite-Difference Ground-water Flow Model," and the information about the
Modular Model is not repeated in this reportu Therefore, it is important to
have a copy of the documentation for the Modular Model handy when using this
report. Copies of documentation for the Modular Model can be purchased from:

Books and Open-File Reports Section
Box 25425, Federal Center
Denver, Colorado 80225
Telephone: (303) 236^7476

A user wanting to quickly use the program should read chapter 1 and
chapter 2 of the present report, as well as the sections of chapter 3
applicable to the features that will be used
for reference, when attempting to find documentation for specific
capabilities or solving problems that occur irhen using the program.

Chapters 3 and 5 can be used

The use of the word "altitude" in this
a point above or below the National Geodetic

report refers to the distance of
Vertical Datum of 1929 (NGVD of

1929) a geodetic datum derived from a general adjustment of the first-order
level nets of both the United States and Canada, formerly called "Mean Sea
Level of 1929" and referred in this report as "sea level". The word
"elevation" in this report refers to the vertical distance between a point
and some datum that is arbitrarily assigned or sea level.

Organization of Thi|s Report

Chapter 1 contains information about ttie this report, and a general
description of the capabilities of the MMSP program.

Chapter 2 provides information about the design, installation, and use
of the MMSP program.

Chapter 3 contains detailed information about the various commands that
may be used to perform analyses of a ground-water simulation. Chapter 3 may
be used to gain familiarity with the capabilities of the program and may be
used as a reference guide for each command. Command descriptions consist of
a discussion of command usage, input instructions, sample input, and sample
output. The input instructions describe how the commands to the MMSP program
are formatted, and the effects of using various command options.

Chapter 4 presents some sample applications of the MMSP program for
analysis of ground-water simulations.

Chapter 5 gives an overview of the internal workings of the MMSP program
and describes corrective actions for errors that may occur when using the
program.

CHAPTER 2
PROGRAM DESIGN

Hardware and Software Requirements

The MMSP program is written in Fortran 77 (American National Standards
Institute, 1978). The program was written and tested on a Prime I/ model
9955-11 mini-computer using revision 21 of the Primes operating system.
However, the program should compile with minor modifications on any computer
system running standard Fortran 77. The only non-standard language element
in the program code is the Prime SINSERT compiler directive (Johnson, 1983).

The SINSERT directive causes the compiler to include the contents of a
named file at the location of the directive. This allows repetition of a
statement or a "block" of statements in several locations in the program.
The SINSERT directive is used in the MMSP code for repeating declaration
statements for variables at several places in the program. Other compiler
vendors provide a similar compiler directive for Fortran 77. Often the
corresponding compiler directive is called INCLUDE. The user of a compiler
that does not provide this capability can insert the appropriate statements
into the program at the locations of the applicable SINSERT directive.

Six blocks of program code are inserted into the MMSP main program and
subroutines. These six blocks of code are presented in attachment A. The
locations where these blocks of code are inserted are shown in table 1.

The first inserted block defines the "Z M array that contains most of the
data used by the MMSP program. Further explanation of the M Z M array can be
found in Chapter 2, Space Allocation.

I/ The use of firm and trade names in this report is for identification
purposes only and does not constitute endorsement by the U.S. Geological
Survey.

Table 1. --Routines containing inserted bLocks of programming statments

[An "X" In the table indicates the routine contains the corresponding block of inserted
programming statements. The programming statements in each block are presented in
Attachment A.]

Name of
routi ne

MMSP (main)
BCFDAL
BCFDRP
DFT1CM
CTL1AL
CTL1CM
STA1SL
SSTA1E
HIS1EX
COM1EX
HEA1EX
REA1EX
REB1EX
SSLI1Y
SSLI1Q
VEC1EX
MAS1EX
MAS1MV
ULC1DS
USYDUD
USKDUD
ULC1LY
UBUBLE
U1DREL
U2DREL

ZARRAY. COMMON. INS STKSIZE.INS STKDEF.INS TINY. INS FLWCOM.INS MISVAL.INS

X XX
X
X

X X
X X
XXX

X
X
X
X

X
X XX

X
X
X

X X
X
XXX

X XX
X

X X
X

X
X

The next two inserted blocks of code pertain to allocation of space for
temporary data storage in a "stack11 . Further explanation of the "stack" is
found in Chapter 2, Auxiliary Data Arrays.

The fourth inserted block of code defines small and large single and
double precision numbers. Alteration of these values may be necessary for
MMSP program use on a computer system with a different precision or
floating-point number representation scheme than that in Prime Fortran 77.

The fifth inserted block of code defines the size of the array LAYCON,
which limits the maximum number of layers that can be simulated using the
Modular Model. If the size of the LAYCON array has been increased in the
Modular Model program, the LAYCON array size should be increased in the MMSP
program.

The sixth inserted block of code defines three missing value indicators.
The missing value indicators are unique numbers that are unlikely to occur in
data read or computed by the MMSP program. When the MMSP program prints and
writes data arrays, some data can be replaced by the missing value
indicators. The presence of the missing value indicators in the data output
by the program indicates that these data are not available or have been
excluded using the methods described in a subsequent section, Subsetting Data
Arrays.

The MMSP program uses some subroutines contained in the proprietary IMSL
subroutine library. A listing of these subroutines is shown in table 2. Two
different versions of the IMSL library can be used with the program. These
subroutines are described in the IMSL library documentation (IMSL Inc., 1982
and 1987).

Table 2.--IMSL subroutines used by the Modular ModeL Stat'ist'icaL Processor

[Release of IMSL I ibrary Edition 9 preceded the release of IMSL I ibrary
Vers i on 1.]

IMSL Edition 9 IMSL Version 1 MMSP
subroutine subroutine caI I ing

name name subroutine Purpose of IMSL subroutine

BDCOU1
USHST
VSRTAD
VSRTRD
UGETIO

OWFRQ
VHSTP
DSVRGN
DSVRBP
UMACH

HIS1EX
HIS1EX
HIS1EX
STA1EX
HIS1EX

Frequency
H i stogram
Sort i ng
Sort ing w i
File unit

computat i on
printing

i th permutations
spec i f i cat i on

The MMSP program uses some of the utility subroutines from the Modular
Model. These subroutines are: (1) U2DREL -- the two-dimensional real array
reader, (2) U2DINT -- the two-dimensional integer array reader, (3) U1DREL --
the one-dimensional real array reader, (4) ULAPRS the strip-format array
printer, (5) ULAPRW the wrap-format array printer, and (6) UCOLNO the
column heading printer. Documentation of these subroutines is contained in
Chapter 14 of the Modular Model documentation. All these subroutines except
UCOLNO have been modified to provide some additional printing options that
are not provided in the Modular Model versions of these subroutines. The
modified versions are presented in attachment B of this report. The other
subroutine is identical to the one used by tl^e Modular Model and is not
reprinted in this report. '

Structure of the Piogram

The organization of the program is similar to the Modular Model and
consists of a small main program with small nodular subprograms that perform
specific tasks. Where appropriate, the names of variables and subroutines
are the same as or similar to corresponding names in the Modular Model.

The main program calls subroutines to allocate memory and read initial
data describing the ground-water simulation. The main program iteratively
invokes a command processing subroutine that reads and executes commands from
a user-supplied command file. Groups of subroutines are associated with each
of the commands that the MMSP program can execute. In addition, a group of
utility subroutines are used for the processing of commands.

Space Allocation

Nearly all spatial and time-variant data are stored in memory by the
program using a single one-dimensional array called the "Z M array. With this
memory management scheme, the user is not obligated to size many different
arrays for every simulation. The Modular Model uses a similar method for
storing data in a one-dimensional array called the MXM array. However,
different data are stored in the MMSP "Z M array than are stored in the
Modular Model MXM array. Therefore, the size of the H Z" array for the MMSP
program may be different from the size of the MXM array for the Modular
Model. The algorithm shown in table 3 provides a method for estimating the
approximate size of the M Z M array. If a programmer modifies the MMSP
program, the algorithm shown in table 3 may not be accurate.

In the Modular Model, the declaration for the MXH array occurs only in
the main program. When adjusting the Modular Model to accomodate different
simulations, it is only necessary to edit, recompile, and link the main
program to the various packages. Because the declaration for the MZM array
occurs at several places in the MMSP progran, resizing of the MMSP program in
the same way is not possible. The size of the M Z M array is assigned by the
value of the variable LENZ in the block of statements named ZARRAY.COMMON.INS.
When using a compiler that can insert these statements during compilation, the
MMSP program can be resized by changing this block of statements, recompiling,

Table 3. An algorithm for estimating of the sisse of the HZ" array needed
for a. given ground-water simulation

[Sum the results of the calculation on each applicable Iine to compute
approximate size required for the simulation and modify the value of
LENZ in the inserted block of programming statements ZARRAY.COMMON.INS]

All Si muI at i ons:

9 * Number of Columns * Number of Rows
15 * Number of Columns * Number of Rows * Number of Layers

If Modular Model Recharge Package is used:

2 * Number of Columns * Number of Rows

If Modular Model Statistical Processor Vector command is used:

4 * Number of Columns * Number of Rows

and relinking the program. When using a compiler that cannot insert these
statements, the value of LENZ must be changed in all four routines listed in
table 1.

After all the memory requirements for time- and space-dependent data
have been computed by the MMSP program, a summary of memory utilization of
the H Z H array is printed. If the HZ H array contains insufficient storage for
a given simulation, an error message is printed and the programs stops.
Otherwise, a message is printed showing the size of the H Z H array necessary
for processing the simulation.

The value of LENZ should be increased if there is insufficient storage
space for processing a simulation. Similarly, the value of LENZ can be
decreased if the MMSP program is allocating too much storage space.
Allocation of unnecessary storage space may cause a computer system to
perform poorly, or may increase the costs charged by a computer center for
running the program.

One of the capabilities of the MMSP program is the calculation of flow
vectors. More memory space is needed by the program when these calculations
are performed. As all users of the MMSP program may not need to calculate
flow vectors, the program will not stop if sufficient space is not available
for flow vector calculation. The program prints a warning message if there
is insufficient space for flow vector calculation. If the flow vectors are
subsequently requested by the user, a message will be printed indicating that
there is insufficient space to process the request, and the flow vectors are
not computed.

Command File

The MMSP program reads all the data that are used for running the
Modular Model. The MMSP program reads data for the basic package from
Fortran unit 5 and writes output to Fortran unit 6. The data written to
Fortran unit 6 describes the results of the operations performed by the MMSP
program. The MMSP program reads the data for the Modular Model specified in
the basic package, and subsequently reads data for other packages which are
identified by positive Fortran unit numbers in the IUNIT array (McDonald and
Harbaugh, 1988, p. 3-27). Therefore, the job control directives that are
used to run the Modular Model are used, with few modifications, to run the
MMSP program. Additionally, the MMSP program needs a command file to be open
on Fortran unit 7.

The user controls the operation of the NMSP program by supplying a
command file. The command file must contain at least four records which
comprise two title lines to be displayed in the output from the MMSP program.
The title lines may each contain up to 128 characters, of which no more than
80 characters may be entered on the first record of the respective title line
in the command file. This is the same format used to enter the title line
(HEADNG) for the basic package of the Modular Model. Thus, the first four
records in the command file are used for entering two title lines that are
printed in the output of the program. The MMSP program prints these two
title lines after the title read from the basic package of the Modular Model.

The MMSP program reads and uses the data for the basic, output-control,
block-centered flow, well, and recharge packages. Data for other packages
are read by the program although these data are not used.

When the MMSP program reads the data tha^t were supplied to the various
packages of the Modular Model, the program uSes subroutines that are similar
to the subroutines that read these data for tihe Modular Model. Therefore, by
default the program will print these data in[the same manner as the Modular
Model prints the data. The Modular Model us^s the value specified for the
IPRN variable on the array-control record to determine whether to print these
data (McDonald and Harbaugh, 1988, p. 14-5).

Some modelers may want to suppress the printing of all data arrays that
are input to the Modular Model when using the MMSP program. The printing can
be suppressed by placing a non-blank character in column 80 of the fourth
record in the command file. A sample command file is shown below with
printing of model-input data suppressed.

MMSP TITLE LINE #1, PART 1, 80 CHARACTERS
...LINE #1, PART 2, 48 CHARACTERS
MMSP TITLE LINE #2, PART 1, 80 CHARACTERS
...LINE #2, PART 2, 48 CHARACTERS

If no records other than the title lines are supplied in the command
file, the MMSP program will perform a set of default commands. The default
commands will cause the MMSP program to attempt to perform the following
operations. (Some of these operations may not be performed successfully
because the data necessary have not been supplied to the Modular Model.)

(1) Compute descriptive statistics on well pumpage rate at active model
nodes.

(2) Compute descriptive statistics on recharge flux at all model nodes.
(3) Compute a frequency analysis of starting heads at active model

nodes.
(4) Check for well pumpage at inactive or constant-head model nodes.
(5) Check for recharge at inactive or constant-head model nodes.
(6) Check for primary storage coefficient greater than 0.005.
(7) Check for starting heads below the elevation of the aquifer bottom.

The user can override these default operations by specifying one or more
commands for the MMSP program that describe the operations to be performed.
Commands are appended to the end of the command file, after the fourth title
record. The default commands are not performed if more than four records are
included in the command file.

Commands consist of column-dependent records, of which the first four
columns are always the command abbreviation. Acceptable command
abbreviations are shown in table 4. Commands abbreviations and any other
character data entered on the command record may be entered in upper- or
lower-case letters. A blank column always follows the command abbreviation
(column 5). Detailed descriptions of the commands are found in chapter 3.

Table 4. --Commands accepted by t/ie ModuLar
Model Statistical, Processor

Command abbreviation Command explanation

TITL
PRIN
WRIT
STAT
HIST
COMP
MATH
READ
HEAD
REBO
SLIC
THIC

VECT

Comment, not processed.
Title, defines an optional title I ine
Printing, writes array to print file
Write, writes array to disk fi le
Statistics, computes descriptive statistics
Histogram, performs frequency analysis
Comparison, compares arrays
Mathematics, computes an array
Read, reads an array
Head, writes computed heads for selected nodes
Reset, updates the mode I-boundary array
SI ice, subsets simulation grid with a plane
Thickness, defines thickness of layers used during
computation of flow-vector locations

Vector, computes flow vectors

Modular Model Data Arrays

The MMSP program reads the same data files that are used by the Modular
Model. No reformatting or modification of tlie Modular Model data files is
necessary to produce statistical analyses using the MMSP program.
Optionally, the user may use the MMSP program to read data computed by the
Modular Model. Again, the MMSP program can Head these data without
reformatting or modification.

Selected data arrays used by the Modular Model are always read by the
MMSP program. These data arrays are shown in table 5. Other data from the
Modular Model are read by the MMSP program and are used for calculations and
error detection. These data are shown in table 6. The reading of the data
shown in tables 5 and 6 is controlled by the IUNIT array in the same manner
as the Modular Model. Because the data listed in tables 5 and 6 are
automatically read by the MMSP program, the files containing these data must
be opened by job control directives prior to running the program. All of the
data shown in tables 5 and 6 are in reserved storage space within the MMSP
program. Thus, these data are always available for computation and use while
the MMSP program is running. This is not so for auxiliary data sets read or
computed by the MMSP program, as will be explained in the next section,
Auxiliary Data Arrays.

Table 5.--Modular Model data arrays read and available to a
user of the Modular Model Statistical Processor

Array description Package Va r i abIe name

Sta rt i ng head
Storage coefficient
Layer bottom
Layer top
Recharge rate

BAS

BCR

BCF

RCH

STRT

SCI
BOT
TOP

RECH

10

Table 6. ModuLar ModeL data read and used 'LnternaLLy by the
ModuLar ModeL Stat-i.st-i.cat Processor

[The foI lowing abbreviations are used: BAS is basic, OC is
output control, BCF is block-centered flow, RIV is river,
RCH is recharge, WEL is we I I, DRN is drain, EVP is evapo-
transpiration, GHB is general-head boundary, and UTL is utility]

Data description

Simulation title
Number of layers
Number of rows
Number of columns
Number of stress periods
Input-unit array
Mode 1 -boundary array
Head for inactive cells
Number of time steps
Computed-head unit number
Computed-drawdown unit number
Head/drawdown output code
Head/drawdown save flags
Cel 1 -by-ce 1 1 unit number
Layer-type table
Cel 1 width along rows
Cell width along columns
Cel 1 -by-ce 1 1 unit number
Recha rge-opt i on code
Cel 1 -by-eel 1 unit number
Recha rge-read flag
Recha rge- 1 ayer-read flag
Recharge layer
Maximum number of wells
Cel -by-eel 1 unit number
We 1 flag/counter
Wet layer
We 1 row
We 1 co 1 umn
We 1 recharge/discharge rate
Cel -by-eel 1 unit number
Cel -by-cell unit number
Cel -by-cell unit number
Flag and unit number
Constant
Format
Flag and print-format code

Package

BAS
BAS
BAS
BAS
BAS
BAS
BAS
BAS
BAS
OC
OC
OC
OC

BCF
BCF
BCF
BCF
RIV
RCH
RCH
RCH
RCH
RCH
WEL
WEL
WEL
WEL
WEL
WEL
WEL
DRN
EVT
GHB
UTL
UTL
UTL
UTL

Var i ab 1 e name

HEADNG
NLAY
NROW
NCOL
NPER
IUNIT
IBOUND
HNOFLO
NSTP
IHEDUN
IDDNUN
INCODE
IOFLG
IBCFCB
LAYCON
DELR
DELC
IRIVCB
NRCHOP
IRCHCB
INRECH
INIRCH
IRCH
MXWELL
IWELCB
ITMP
K
I
J

Q
IDRNCB
IEVTCB
IGHBCB
LOCAT
CNSTNT
FMTIN
IPRN

11

Three computed data arrays are available to the user of the MMSP program
for analysis. These data arrays are recharge flux, well pumpage rate, and
cell area. Recharge flux for each node is computed by multiplying the
recharge rate, by the width of the cell along the column, and by the width of
the cell along the row. The MMSP program uses the recharge option (NRCHOP)
to determine which layer receives recharge. However, the model boundary
array is not used to exclude recharge from inactive or constant head nodes.
Because the thickness of cells may be variable across the areal extent of the
model grid, recharge flux is computed as a unit depth. Well pumpage rate
data are prepared by setting the well discharge/recharge rate, for the node
at the the layer, column, and row location specified for the well. The well
pumpage rate is set to zero at all other nodes. Cell area is computed from
the width of cells along columns and the width of cells along rows. Because
all of the variables needed to prepare well pumpage rate, recharge rate,
recharge flux, and cell area are stored in reserved locations, these three
computed data arrays are always available to

The data for recharge rate and well pumpage rate may be altered for each
stress period during Modular Model runs. If
are used in the Modular Model, the MMSP program automatically reads the data
input to these packages for the first stress

the user of the MMSP program.

the well or recharge packages

period when the program begins.
The user may read pumpage or recharge data for subsequent stress periods
using the READ command described in chapter 3.

Auxiliary Data Arrays

Data arrays that are not used by the Modular Model also may be analyzed
using the MMSP program. These data arrays must be formatted in a manner
compatible with the MMSP program. Some analyses desired by users of the MMSP
program may require data that are not entered for the Modular Model. An
example of such an analysis is to test if starting heads or computed heads
are higher than the land surface at any model nodes. To perform this
calculation, the program must be provided with an array of values
representing the altitude of the land surface because these data are not
supplied to the Modular Model. These data must be read by the MMSP program
before performing the test. Then the land-surface array may be compared on a
node-by-node basis with the head array.

Another example is the calculation of descriptive statistics for the
change in head between time steps. Using the MMSP program, the computed
heads may be read for two different time steps, and an array may be
calculated on a node-by-node basis that is the difference between the two
computed head arrays. After the difference array has been calculated,
statistics may be computed on that array.

Whenever auxiliary data arrays are read or computed by the MMSP program,
whether these data are output generated by the Modular Model or other data,
the data are stored in a temporary storage area referred to as the "stack".
The stack is a collection of temporary storage locations for data arrays.
The MMSP program maintains two stacks: One stack for the storage of
two-dimensional (column and row) data, and the other stack for the storage of

12

three-dimensional (column, row, and layer) data. The logic of the MMSP
program determines which stack should contain a given data array, based upon
the size of the data array. Whenever an operation is performed by the MMSP
program that alters the contents or positions of arrays stored in a stack,
the program prints a summary of the stack contents.

The two-dimensional and the three-dimensional stacks each contain space
to store four arrays. When a new array is stored in a stack, the new entry
is placed at the bottom (fig. 1). The previous entries on the stack are
moved upward in storage location. Storage of a fifth entry will cause
removal of the oldest entry, which will no longer be available for analysis
using the MMSP software.

Data-set Names

When a command is given to the MMSP software, the user indicates which
data array(s) is to be the object of the command by specifying a data-set
name (DSN) for the data array. Data-set names consist of 1-6 characters in
either upper- or lower-case letters. Lower-case letters are converted to
upper case prior to being processed by the MMSP program. When a data-set
name is given that consists only of numeric data, the MMSP program prepares a
data array with all nodes equal to the numeric value that was entered for the
data-set name.

The data arrays input to the Modular Model, as shown in table 5, are
assigned data-set names and are available for analysis using the MMSP
program. The data arrays for well pumpage rate, recharge rate, recharge
flux, and cell area, and the data arrays output by the Modular Model have
reserved data-set names. There are also two other reserved data-set names
(IBOUND and CLASS), and the usage of these names is explained in chapter 3.
The reserved data-set names are shown in table 7.

When the MMSP program requires a data array to perform an operation, the
following steps are used to match a data-set name with a data array. The
program first determines if the data array must be generated because it is
well pumpage rate, recharge flux, or cell area. If the data array is not to
be generated, the program determines if the data array is one of the Modular
Model data arrays listed in table 5. If the data array is still not defined,
the program determines if the two-dimensional stack contains the data-set
name. The stack is searched from the bottom position to the top position.
Failing to find the data-set name, the program will examine the three-dimen
sional stack in a similar fashion. Finally, the program will attempt to read
the data-set name as a real number. If the data-set name is a real number,
then a three-dimensional data array is created with all values in the array
equal to the real number.

If the data-set name is found during any of the steps listed above,
further searching for the data array ceases, and the data array whose DSN
matched the requested DSN is used. There is one exception to this rule. Two
commands available in the MMSP program can use two data arrays. These two
commands are (1) the computation of a data array (MATH), and (2) the

13

(1) Put ARRAY-1 on stock (2) PuJ ARRAY-2 on stock

(3) Put ARRAY-3 on stock (4) Pu t ARRAY-4 on stock

Figure 1. Movement of data arrays on the stack as
new data arrays are added.

14

Table 7. Reserved data-set names for the
ModuLar ModeL Statistical Processor

Data-set name Contents of the data array

STRT
SCI
TOP
BOT
WELL
RECH
RECHF
AREA
HEAD
DRAWDN
STORAG
CNHEAD
RIFACE
FRFACE
LOFACE
CBCRIV
CBCRCH
CBCWEL
CBCDRN
CBCEVT
CBCGHB
UBOUND
CLASS

Start \ ng head
Storage coeff \ c \ ent
Top of layer
Bottom of Iayer
We I I-pumpage rate
Recharge rate
Recharge fIux
Area of cells
Computed heads
Computed drawdowns
Storage eel I-by-eel I flow terms from BCF package
Constant head eel I-by-eel I flow terms from BCF package
Right-face cell-by-cell flow terms from BCF package
Front-face eel I-by-eel I flow terms from BCF package
Lower-face eel I-by-ceI I flow terms from BCF package
CeI I-by-ceI I flow terms from RIV package
CeI I-by-ceI I flow terms from RCH package
CeI I-by-ceI I flow terms from WEL package
CeI I-by-ceI I flow terms from DRN package
CeI I-by-ceI I flow terms from EVT package
CeI I-by-ceI I flow terms from GHB package
User boundary
Histogram classes

comparison of one data array with another data array (COMP). It is possible
to duplicate data-set names on the two- or three-dimensional stacks. When
either MATH and COMP operations are performed, and the user requests the same
DSN for both input data arrays and the data arrays are stored on the same
stack, the following occurs. The first use of the DSN results in the MMSP
program using the first occurence of the DSN encountered on the stack; the
second use of the DSN in the same operation results in the MMSP program using
the second occurence of the DSN on the stack. If the DSN is stored on the
stacks in only one location, then the same data array is used for both
occurences of the DSN.

The MMSP commands READ and MATH provide the capabilities for reading or
computing a data array and giving a data-set name to the corresponding data
array. The previously described searching procedure for data-set names
causes some limitations in names that can be assigned to new data arrays
either read or created using the READ and MATH commands.

15

Any data-set name that abides by the following rules may be given to a
data array. First, the name must not conflict with any of the data-set names
that have reserved storage locations within the MMSP program (STRT, SCI, BOT,
TOP, and RECH). Second, the name must not conflict with either of the
data-set names that identify a data array which will be computed by the MMSP
program (WELL, RECHF, and AREA). Third, no new three-dimensional data array
should be given the same name as a data array that is already stored on the
two-dimensional stack. Until the two-dimensional data array is removed from
the stack, the like-named three-dimensional d^ta array will never be used by
the MMSP program.

It is permissible, but not advisable, to
(such as M 1 M). As long as a data array with

name a data array with a number
a numeric name is on the stacks,

the MMSP program will use the data array from the stack, and the MMSP program
will not create an array with all nodes equal to that numeric value.
Alternatively, a data-set name with a number in characters (such as M ONE M)
causes no problems.

Subsetting Data Arrays

Subsets of data arrays may be created in a number of different ways for
analysis by the MMSP program. Often the user may wish to restrict an
analysis to a single layer of a three-dimensitonal data array. The six
commands PRIN, WRIT, STAT, HIST, MATH, and COMP allow the user to specify a

the selected layer. When the
the data array are used for the

layer number, which confines the operation to
layer number is blank, or zero, all layers of
analysis.

If a layer number is specified for a two-dimensional data array, an
error message is written to the output file, the specification is ignored,
and the operation is attempted using the entire two-dimensional data array.
Certain three-dimensional data arrays may not always contain data for every
layer in the simulation, therefore these data arrays can be "sparsely
layered". The data arrays for layer top (TOP) and layer bottom (BOT) contain
data only for layers appropriately identified by the layer index variable
(LAYCON, specified in the input to the block-icentered flow package of the
Modular Model). Likewise, the calculated heads (HEAD) and drawdowns (DRAWDN)
for a time step may be sparsely layered by the specifications for the
head/drawdown save flag variable (IOFLG), that is specified for the
output-control package of the Modular Model. The MMSP program uses the
LAYCON and IOFLG variables and will print a message if the user attempts to
use a layer that is not available for a sparsely layered data array.

A subset of a data array also may be created by masking some values
during an analysis. This subsetting process is called masking because data
values are either removed or replaced prior to performing an operation. The
operation is performed using data values that
of the mask.

remain after application

When using a mask with the STAT, HIST, ahd COMP commands, values that
have been masked are removed from the data anray prior to performing the

16

command. Thus, with these three commands, application of a mask causes the
number of data values to be reduced.

The commands PRIN, WRIT, and HEAD can mask data arrays also. When
values are masked during these three commands, the masked data values are
replaced by a missing-value indicator. The missing-value indicator is a
number indicating that the value has been masked. The default missing-value
indicators are shown in attachment A, in the inserted block of statements
named MISVAL.IMS. Each of the three missing-value indicators is associated
with one of three masks that are discussed in the following paragraphs. When
a data array is masked during the commands PRIN, WRIT and HEAD, the number of
values remaining in the data array is not reduced.

There are three masking procedures available that may be specified indi
vidually or in combination. The three masking procedures are named (1) the
zero mask, (2) the model-boundary mask, and (3) the user-boundary mask. The
simplest mask is the zero mask. When the zero mask is specified, values
equal to zero in the data array are masked before performing the requested
operation. The other two masks are boundary masks. When applying a boundary
mask, a second array is used to mask the contents of the data array that is
input to the operation. The value of each element in the masking array,
called the boundary array, is used to determine whether to mask or not to
mask the corresponding element of the data array.

The first of the boundary masks uses the model-boundary array (IBOUND),
that is input to the the basic package of the Modular Model. The IBOUND
array identifies model nodes as being constant head, inactive, or active by
negative, zero, or positive values, respectively. An operation may be
restricted to analysis of any combination of these three groups of model
nodes. To identify which group of model nodes are to be included in the
analysis using the model-boundary mask, the user specifies a "mask key"
value. These values range from -3 to +3 (table 8). For example, to restrict
an analysis to active model nodes, and mask the values of inactive and
constant head nodes, the mask-key value should be set equal to one.

Table 8. Eacp La-nation of the mode {.-boundary mask-key fieid
of the Moduiar ModeL Statistical. Processor

Model nodes remaining after mask application Mask key

Inactive nodes -3
Constant head nodes -2
Inactive and constant head nodes -1
Inactive, constant head and active nodes O
Act i ve nodes 1
Constant head and active nodes 2
Inactive and active nodes 3

17

The second of the boundary masks uses a user-specified boundary array
(UBOUND), that may be defined for the MMSP program using either of two
methods. To define the UBOUND array by the first method, enter the
user-boundary array using the READ command of the MMSP program. The second
method for creating a user-boundary array slices the model grid with a plane
that defines the user boundary. Using this second method, a user boundary
may be created along any row, column, or layer; or, optionally, may slice
the model grid obliquely. Details for creating a user-boundary array can be
found in chapter 3. I

The user-specified boundary array consists of an integer value for each
node in the model grid. UBOUND array values greater than zero indicate that
the corresponding nodes of the model are "inside" the boundary. UBOUND array
values less than or equal to zero indicate that the corresponding nodes of
the model are "outside" the boundary. The UBOUND mask may be used to mask
data values that are either "inside" or "outside" the user's boundary. A
positive value for the UBOUND mask key will cause masking of all values in a
data array whose corresponding elements of the UBOUND array that are
"outside" the boundary, and all values that ire "inside" the boundary are not
masked. A negative value for the UBOUND mask key will cause masking of all
values in a data array whose corresponding values of the boundary array are
inside the boundary.

Application of the three masks by the
combining the UBOUND mask with the IBOUND
42 different combinations of composite masks
data array is masked by any of the three
masked for the duration of the operation,
array are shown in figure 2.

Ml ASP
ma; sk

program is cumulative. When
and the zero mask, as many as

are possible. If a value of a
masting options, the value will be

examples of masking a dataTiree

When a two-dimensional data array is mabked using one of the two
boundary masks, it is necessary to identify now the mask should be applied.
Since the IBOUND and UBOUND boundary arrays are three-dimensional, it is
important to indicate which layer from the boundary array should be used for
masking the two-dimensional data array. The layer number is used to identify
which layer from the boundary array should be used for masking the data
array.

18!

IBOUND ARRAY DATA ARRAY OUTPUT ARRAY

0

0

0

0

0

1

1

1

0

1

1

1

0

1

1

1

IBOUND ARRAY

9

4

10

0

4

9

5

7

3

0

1

2

1 1

6

8

4

9

5

7

0

1

2

6

8

4

EXAMPLE ONE: Mosking of inoctive nodes

DATA ARRAY OUTPUT ARRAY

0

0

0

0

0

1

1

1

0

1

1

1

0

t

1

1

9

4

10

0

4

9

5

7

3

0

1

2

1 1

6

8

4

9

4

10

0

4 3 1 1

EXAMPLE TWO : Mosking of oc t i ve nodes

IBOUND ARRAY

0

0

0

0

0

1

1

1

0

1

1

1

0

1

1

1

DATA ARRAY

9

4

10

0

4

9

5

7

3

0

1

2

1 1

6

8

4

OUTPUT ARRAY

EXAMPLE THREE: Mosking of inoctive ond zero-volue nodes

Figure 2. Examples of the application of masking to a data array

19

CHAPTER 3.
USE OF THE PROGRAM

General Comments

This chapter provides a description of each of the commands that may be
used in the MMSP command file for controlling the operations performed by the
program. The chapter has a section for each command and each section
contains a discussion of the command, input instructions, example input, and
example output. The purpose of this chapter is to provide the user with a
knowledge of the capabilities and the requirements of the MMSP commands.
This chapter can be used to learn about the capabilities of the program and
as a reference guide for information about specific commands. Therefore,
some information that is applicable to more than one command is repeated in
several sections.

The examples in this chapter show how
The examples are relatively simple applications
complex applications of the MMSP program are

commands are used and formatted,
of the MMSP program. More

presented in chapter 4.

The example input and output shown in this chapter consistently refer to
the same ground-water simulation. The simulation presented is based on the
sample problem in Appendix D of the Modular Model documentation (McDonald and
Harbaugh, 1988, p. D-l through D-12). The presentation of the simulation in
Appendix D has been modified to save unformatted cell-by-cell flow terms and
computed head data. The output-control package data for the simulation has
been provided by specifying a non-zero Fortran unit in the IUNIT array (in
the basic package, McDonald and Harbaugh, 1968, p. 4-11). The contents of
the output-control package data (McDonald ana Harbaugh, 1988, p. 4-14 through
4-16) are shown below.

29
0
1

0 JEHEDFM, IDDNFM, IHEDUN, IDDNUN
1 INCODE,IHDDFL,IBUDFL,ICBCFL
0 HDPR, DDPR, HDSV, DDSV

Additionally, the cell-by-cell flow terms have been saved to a file by
specifying positive values for the cell-by-cell flow-term Fortran unit number
in the input data sets for the block-centered flow, recharge, drain, and well
packages. These values are specified for the variables: IBCFCB, IRCHCB,
IDRNCB, and IWELCB, respectively.

The MMSP program processes commands sequentially in the order that the
commands are placed in the command file. Therefore, if data produced by a
command are required for processing of a second command, the second command
is placed after the first command in the command file.

20

Command Descriptions

Documenting the Command File

DISCUSSION

When placing commands in the MMSP command file, inserted comments will
be ignored by the MMSP program. These comments can be used to document
commands or groups of commands in the command file. Two methods may be used
for placing comments in the command file. The first method is to use the
MMSP comment command that is described in this section. The second method is
to place comments in unused columns at the end of other MMSP commands.

INPUT INSTRUCTIONS

Field: Command COMMENT

Beginning column: 1 6

Data Format: **** A75

MMSP program comments are designated by placing asterisks in the first
four columns of the command line.

SAMPLE INPUT

Input Command File

**** STAT COMMAND FORMAT
**** L O I U (O = ZERO-MASK)
**** A (I = MODEL BOUNDARY MASK)
**** DSN Y MASKS (U = USER BOUNDARY MASK)
**** STAT

SAMPLE OUTPUT

There is no printed output from the comment command.

21

Title Lines

DISCUSSION

There are three different types of title lines printed in the output of
the MMSP program. The first type is a single line that is read from the
input to the basic package of the Modular Model. The second type consists of
two lines read from the beginning of the MMSP command file. All three of
these title lines may contain 128 characters each, and are printed on top of
pages throughout a single execution of the MMSP program.

The third type of title line is optional, and can be defined with the
MMSP TITL command. This title line may contain 75 characters and can be
changed as often as desired during an execution of the MMSP program. Titles
entered with the TITL command are printed on the fourth title line below the
title line from the basic package, and the titles from the beginning of the
command file.

Most MMSP commands cause the program to print at least one page of
output. The TITL command does not cause any new pages of output. Instead,
the TITL command defines the fourth title line to be printed on the next page
of output. The definition of the fourth title line remains in effect until
another TITL command is read by the MMSP program from the command file.

INPUT INSTRUCTIONS

Field: Command TITLE

Beginning column: 1 6

Data Format: TITL A75

SAMPLE INPUT

Input Command File

MMSP TITLE LINE #2

MMSP TITLE LINE #3

TITL FORGOT TO HAVE THE MODULAR MODEL PRINT THE STARTING HEAD ARRAY
**** 1 122334455667
****5 0505050505050
PRIN STRT

22

SAMPLE OUTPUT

Output Print File

SAMPLE -3 LAYERS, 15 ROWS, 15 COLUMNS, STEADY STATE, CONSTANT HEADS COLUMN 1, LAYERS 1 AND 2, RECHARGE, WELLS AND DRAINS
MMSP TITLE LINE #2
MMSP TITLE LINE #3

FORGOT TO HAVE THE MODULAR MODEL PRINT THE STARTING HEAD ARRAY

Processing: PRIN STRT

PRINTING OF : STRT - INITIAL HEADS
ALL LAYER(S)
USING FORMAT CODE: 000

COMMENTS

In this example, the TITL command was followed by a PRIN command. The
PRIN command, discussed in a subsequent section, included in this example
shows the effects of the TITL command. The complete results of the PRIN
command are not shown here.

23

Reading Data Arrays

DISCUSSION

The MMSP program will read automatically the recharge and well
pumpage-rate data for the first stress period if the Modular Model IUNIT
array indicates that the packages are used in the simulation. The MMSP READ
command can be used to read thse data for analysis of subsequent stress
periods in a transient simulation.

A simulation using the Modular Model caji write detailed flow and head
information to binary output files. The data arrays in these binary files
may be accessed and used by the MMSP program with the READ command.

Other data arrays to be analyzed with the MMSP program can be accessed,
if these arrays are prepared in the format specified for the Modular Model
array readers U2DREL and U2DINT. An example application of this capability
is reading a data array representing the altjltude of the land surface, in
order to check if head exceeds the land-surface datum at any model nodes.

The READ command may be used to define the user-boundary array (UBOUND),
for use in masking. The SLIC command, discussed later in this chapter, also
may be used to define the user-boundary array.

A modeler may use the READ command to read a set of class boundaries for
use with the HIST command when performing frequency analysis. These class
boundaries are called "cut points". When performing a frequency analysis
with user-specified cut points, the HIST comjnand uses the cut points as class
boundaries. Therefore, the number of frequency classes used by the HIST
command will be one greater than the number of cut points provided by the
modeler with the READ command.

Modelers can combine binary data of different types in the same file by
specifying the same Fortran unit number in different places of the Modular
Model input data. When the MMSP program reads cell-by-cell flow terms,
computed heads, or computed drawdowns the program reads the record of
identifying information in the binary file written by the Modular Model. If
the information identifies the data specified by the READ command, the
program reads the data, prints a summary, and processes the next command in
the command file. However, if the identification record does not match the
data requested, the program continues reading from the Fortran unit and a
message is printed showing what data were found and indicating that the
program is "fast-forwarding". The MMSP program continues in this manner
until the requested data are found. If the end of the file is reached before
the requested data are found the MMSP program returns to the beginning of the
file and prints a message indicating that the program is "rewinding". The
program then continues examining identification records, printing messages,
and attempting to find the requested data. If the end of the file is reached
a second time, the program prints an error message and the READ command
aborts.

24

The costs and the processing time for running a computer program on many
computer systems is related to the amount of time the computer uses for
reading files. To minimize processing time, data arrays should be read in
the same order as the arrays were written. A large number of
"fast-forwarding" and "rewinding" messages in the output from MMSP may be an
indication that the commands could be reordered for more efficient
processing.

INPUT INSTRUCTIONS

NUMBER
OF DATA STRESS TIME

Field: Command DSN UNIT DIMENSIONS TYPE PERIOD STEP ARRAY-NAME

Beginning column: 1 6 13 16 18 20 23 26

Data Format: READ A6 12 II Al 12 12 A24

When reading frequency analysis cut points:

NUMBER OF
Field: Command DSN UNIT CUT POINTS

Beginning column: 1 6 13 16

Data Format: READ CLASS 12 12

To read a data array, include the READ command in the command file and
specify the DSN of the data array to be read. If the data array is input for
the well or recharge package of the Modular Model (WELL or RECH), the only
other required information is the stress period desired. If the data array
is one of the Modular Model outputs (HEAD, DRAWDN, CNHEAD, STORAG, RIFACE,
FRFACE, LOFACE, CBCRIV, CBCRCH, CBCWEL, CBCDRN, CBCEVT, or CBCGHB), the only
other needed information is the stress period and time step. For these data
arrays, the program will determine the Fortran unit number, the number of
dimensions, the data type, and the array name. This information is
determined from the data input to the applicable packages of the Modular
Model.

The MMSP program can only read computed heads, computed drawdowns, and
cell-by-cell flow terms if these data were written by the Modular Model. The
specifications for the various packages of the Modular Model determine if
these data are written. To read HEAD or DRAWDN, the data for the Output
Control package of the Modular Model should specify a unit number for IHEDUN
or IDDNUN. Additionally, non-zero values must be specified for each of the
time steps to be read for the variables IHDDFL, and HDSV or DDSV. To read
cell-by-cell flow terms, data for each time step for the Output Control
package should specify a non-zero value for the variable ICBCFL.
Additionally, a positive integer should be supplied in the data input for
each package identifying the unit number for recording the cell-by-cell flow
terms (McDonald and Harbaugh, 1988, pp. 4-14 through 4-16).

25

Data arrays not mentioned in the previous paragraphs must be described
in greater detail to retrieve them using the MMSP READ command. Any data
array that is to be read using the READ command must be formatted with an
array-control record as described in the Modular Model documentation, Utility
Modules chapter. For these data arrays, the READ command must specify the
following fields:

(1) The DSN to be given to the data array,
(2) The Fortran unit number that provides the array-control record

(opened by job control directives before the beginning the MMSP
program),

(3) The number of dimensions in the data
data, "3" for row-column-layer data)

(4) The type of data ("R" for real numbers,
(5) Optionally, a textual description of

array (M 2 M for row-column

'I M for integers), and
the array. The textual

description is entered as a 24-character array name. This name
is printed whenever the array is used, but the name is not needed
for the MMSP program to operate.

Although the READ command allows the reading of integer data, the MMSP
program will convert integer arrays to real numbers.

When reading a user-boundary array, the READ command should specify: a
DSN of UBOUND, the Fortran unit number of the data file, M 3 M dimensions, and
"I" type.

When reading a data array that was previously written using the WRIT
command, use the same Fortran unit number in the READ command, as was used
with the WRIT command. The WRIT command places the unit number in the
array-control record that is written with thte data array.

When reading frequency-analysis cut points, the READ command format
differs from the format used for reading two- and three-dimensional data
arrays. In this case, the READ command should specify: a DSN of CLASS, the
Fortran unit number of the data, and the number of cut points to be read.
The format of the data set containing the cut points should meet the
specifications of the Modular Model one-dimensional real array reader:
U1DREL.

SAMPLE INPUT

input Command File

EXAMPLE OF READ COMMAND, USED TO READ DAtA

**** 1122334
****5 0505050

455667
505050

READ HEAD I I

26

SAMPLE OUTPUT

Output Print File

SAMPLE 3 LAYERS, 15 ROWS, 15 COLUMNS, STEADY STATE, CONSTANT HEADS COLUMN 1, LAYERS 1 AND 2, RECHARGE, WELLS AND DRAINS
EXAMPLE OF READ COMMAND, USED TO READ DATA

Processing: READ HEAD 1 1

READING : HEAD - COMPUTED HEADS
ON UNIT: 29
STRESS PERIOD 1
TIME STEP 1

THREE-DIMENSIONAL STACK CONTENTS AFTER READ COMMAND

STACK DATA SET STRESS TIME
POSITION NAME PERIOD STEP DESCRIPTION

4 00
3 00
2 00
1 HEAD 1 1 COMPUTED HEADS

COMMENTS

This example shows the printed output from a READ command that is used
for subsequent examples. The only information required to read the HEAD
array is the stress period and the time step.

27

SAMPLE INPUT

Input Command File

EXAMPLE OF

**** i
****5 O
READ CLASS

READ

1
5

31

COMMAND, USED TO

223
050

19

READ

3
5

DATA

4 4
0 5

55667
O 5 O 5 O

Input Disk File

31 1. (8F10.4) 1
0.000000 7.08039 14.1608 21.2412 28.3216 35.4019 42.-823 49.5627
56.6431 63.7235 70.8039 77.8843 84.9647 92.0451 99.:.265 106.206
113.286 120.367 127.447

SAMPLE OUTPUT

Output Print File

SAMPLE -3 LAYERS, 15 ROWS, 15 COLUMNS, STEADY STATE, CONSTANT HEADS COLUMN 1, LAYERS 1 AND 2, RECHARGE, WELLS AND DRAINS
EXAMPLE OF READ COMMAND, USED TO READ DATA

Processing: READ CLASS 31 19

HISTOGRAM CUT POINTS WILL BE READ ON UNIT 31 USING FORMAT: (F10.4)

0.00000
70.804

7.0804
77.884

14.161
84.965

21.241
92.045

28.322
99.126

35
106.21

402 42.482
113.29

49.563
120.37

56.643
127.45

63.724

COMMENTS

In this example, Fortran unit 31 had been opened with job control
directives prior to beginning the MMSP program. The READ command was used to
read histogram cut points for later use with the HIST command.

28

Printing Data Arrays

DISCUSSION

The MMSP program can print data arrays in the strip and wrap formats
described in the Modular Model documentation (McDonald and Harbaugh, 1988,
p. 14-2). An extra Modular Model simulation can be avoided if a modeler
wishes to print one of the input or output data arrays. The READ command may
be used to read binary-formatted data computed and written to a file by the
Modular Model. These data may be printed using the MMSP PRIN command.
Additionally, the MMSP MATH command (discussed in this chapter) can be used
to compute a data array that can be printed with the PRIN command.

INPUT INSTRUCTIONS

Field: Command DSN LAYER MASK FMT-CODE MISSING-VALUES

Beginning column: 1 6 13 16 23 27

Data Format: PRIN A6 12 16 13 3F10.0

To print a data array using the MMSP program, include the PRIN command
in the command file and specify the DSN of the array to be printed. The
operation of the PRIN command may be controlled by using any combination of
the following options.

A specific layer of a three-dimensional data array may be printed by
specifying the layer number with the PRIN command. If the layer number is
not specified, the layer number defaults to zero, and causes all layers to be
printed.

The three masks: zero, IBOUND, and UBOUND, discussed in chapter 2,
Subsetting Data Arrays, may be used with the PRIN command. Individual masks
are enabled or disabled by placing integer values in the appropriate mask
fields (fig. 3). When a value is masked by the PRIN command, it is replaced
by one of the three missing-value indicators. The three masks have a
one-to-one correspondence with the three missing-value indicators. For
example, when a zero-mask is requested by placing a non-zero value in columns
16-17, all zero values in the data array are replaced by the first missing-
value indicator during printing. Values masked by the model-boundary array
are replaced by the second missing-value indicator during printing.
Similarly, values masked by the user-boundary array are replaced by the third
missing-value indicator during printing.

29

COMPOS I T
ASK FIELD 6

ZERO
MASK

FIELD
(12)

BOUND
MASK

E I ELD
(12)

UBOUND
MASK

E I ELD
(12)

NODES REMAINING AFTER EACH

ZERO MASK FIELD
MODEL BOUNDARY

MASK FIELD

M
K

ASK
EY
= 0 :
>0 :
<0 :

NODES
RETURNED
All
Non-zero
Non-zero

MASK
KEY

= -3
= -2

= - 1

= 0
= 1
= 2

= 3

NODES
RETURNED

Inactive
Constant head
Inactive and
Constant head
All
Active
Constant head
and Active
Inactive and
Active

APPL I CAT I ON

USER BOUNDARY
MASK FIELD

MASK NODES
KEY RETURNED
= 0 : All
>0 : where UBOUND > 0
<0 : where UBOUND <= 0

Figure 3. Modular model statistical processor
mask-field components.

30

By default, the missing-value indicators are defined by MISVAL.INS, as
shown in attachment A. The default values for the missing-value indicators
may be overridden for the duration of the command by specifying the desired
numerical values in the MISSING-VALUES field of the PRIN command.

The data arrays for altitudes of the aquifer top (TOP) and aquifer
bottom (BOT) do not necessarily contain data for all layers. The existence
of data for a specific layer is determined by the value given in the
layer-type array (LAYCON). All of these data are prepared as input to the
Modular Model in the block-centered flow package (McDonald and Harbaugh,
1988, p. 5-37 through 5-40).

Similarly, the data arrays for computed head (HEAD) and computed
drawdown (DRAWDN) do not necessarily contain data for all layers. The
existence of data for a specific layer is determined by the value given in
the save-flag array (IOFLG). IOFLG is entered into the Modular Model in the
output-control package (McDonald and Harbaugh, 1988, p.4-16 and 4-59
through 4-62).

When a PRIN command specifies a particular layer, and that layer does
not exist according to the specifications of LAYCON or IOFLG, the PRIN
command issues an error message and stops performing the command. When a
PRIN command specifies layer zero, indicating all layers are to be printed,
any data layers that do not exist during printing are set equal to the first
missing-value indicator.

The data array may be printed in either strip or wrap format using
Fortran format specifications in the same manner as the Modular Model utility
modules ULAPRS and ULAPRW (McDonald and Harbaugh, 1988, chapter 14). A
Fortran format may be chosen from table 9. Format codes 1-12 presented in
table 9 are the same formats provided for use with the Modular Model. The
utility modules supplied with the MMSP program have the additional format
codes 13-20 for use with 80-column output devices.

To select a Fortran format for use with the PRIN command, find the
corresponding print-format code in the table, and enter the value in the
FMT-CODE field of the PRIN command. A negative value of the print-format
code will cause printing of the data array in the strip format. A positive
value will cause printing of the data array in the wrap format. If the
FMT-CODE field is blank or zero, the data are printed using the wrap format
and print-format code 12, Fortran format (10G11.4).

31

Table 9 .--Pr-i.nt-/ormat codes /or WRIT and PRIN commands
of the ModuLar ModeL Statistical Processor

[With the 'PRIN' command:

With the 'WRIT' command:

print-format code > O
print-format code < O
print-format code > O
pr i nt-format code < O

wrap format
str i p format
wrap format
unformatted.

modified from McDonald and Harbaugh, 1988, p. 14-3.]

Format code Fortran format

O
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

(11G10.3)
(9G13.6)
(15F 7.1)
(15F 7.2)
(15F 7.3)
(15F 7.4)
(20F 5.0)
(20F 5.1)
(20F 5.2)
(20F 5.3)
(20F 5.4)
(10G11 .4)
(8G 9 . O)
(8G 9.1)
(8G 9.2)
(8G 0.3)
(8F 0.0)
(8F 9.1)
(8F 9.2)
(8F 9.3)

32

SAMPLE INPUT

Input Contend File

EXAMPLE OF PRINT COMMAND

**** PRINT WELLS IN TOP LAYER FOR STRESS PERIOD 1
**** MASK THE INACTIVE AND CONSTANT HEAD NODES TO 9
**** 1122334455667
****5 O5O5O5O5O5O5O
PRIN WELL Ol OOO1OO OOO 9.O

SAMPLE OUTPUT

Output Print File

SAMPLE 3 LAYERS, 15 ROWS, 15 COLUMNS, STEADY STATE, CONSTANT HEADS COLUMN 1, LAYERS 1 AND 2, RECHARGE, WELLS AND DRAINS
EXAMPLE OF PRIN1 COMMAND

Processing: PRIN WELL 01 000100 000 9.0

PRINTING OF :WELL - WELL PUMPAGE
LAYER 1
STRESS PERIOD 1
TIME STEP 1
USING FORMAT CODE: 000

Beginning mask from layer 1

Masking was performed on WELL

210 values unmasked out of 225

15 points masked that were inactive or constant head nodes

33

Output Print File Continued

WELLS IN LAYER 1 AT END OF TIME STEP 1 IN STRESS PERIOD 1

1

2

3

4

5

6

7

B

9

10

11

12

13

14

15

1
11

9.000
0 0000

9.000
0.0000

9.000
0.0000

9.000
0.0000

9.000
0.0000

9 000
0.0000

9.000
0.0000

9.000
0.0000

9.000
0.0000

9.000
0.0000

9.000
0.0000

9.000
0.0000

9.000
0.0000

9.000
0.0000

9.000
0.0000

2
12

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
-5.000

0 . 0000
0.0000

0.0000
-5.000

0.0000
0.0000

0.0000
-5.000

0.0000
0.0000

0 . 0000
0.0000

3
13

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0 . 0000
0.0000

0.0000
0.0000

0 . 0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

4
14

0.0000
0 0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
-5.000

0 . 0000
0 . 0000

0.0000
-5.000

0 . 0000
0.0000

0 . 0000
-5.000

0.0000
0.0000

0.0000
0.0000

5
15

0.0000 0.0
0.0000

0.0000 0.0
0.0000

0.0000 0.0
0.0000

0.0000 0.0
0.0000

0.0000 0.0
0.0000

0.0000 0.0
0.0000

0.0000 0.0
0 . 0000

0.0000 0.0
0.0000

0.0000 0.0
0 . 0000

0.0000 0.0
0.0000

0.0000 0.0
0 . 0000

0.0000 0.0
0.0000

0 . 0000 0 . 0
0 . 0000

0.0000 0.0
0 . 0000

0.0000 0.0
0.0000

6 7

600 0.0000

000 0.0000

000 0.0000

300 0.0000

000 0.0000

000 0 . 0000

000 0.0000

000 0.0000

000 0.0000

000 0.0000

000 0.0000

000 0.0000

000 0 . 0000

000 0.0000

000 0.0000

B 9

0.0000 0.0000

0 . 0000 0 . 0000

0.0000 0.0000

0.0000 0.0000

0.0000 0.0000

0.0000 0.0000

0 . 0000 0 . 0000

0.0000 0.0000

-5.000 0.0000

0.0000 0.0000

-5.000 0.0000

0.0000 0.0000

-5.000 0.0000

0.0000 0.0000

0.0000 0.0000

10

0 . 0000

0.0000

0.0000

0 . 0000

0.0000

0.0000

0.0000

0.0000

-5.000

0.0000

-5.000

0.0000

-5.000

0.0000

0.0000

34

Writing Data Arrays

DISCUSSION

Data input to or output from the Modular Model can be used in a
statistical package, a graphical display program, or similar programs. The
MMSP program can write data arrays to a disk file using the WRIT command.
Data arrays written by the MMSP program can be used as data input to the
Modular Model.

When using the WRIT command, the user must provide a Fortran unit number
that can be used for writing the data array. The Fortran unit must have been
opened for writing by the user's job control directives before running the
MMSP program.

The MMSP WRIT command can write data to a formatted or an unformatted
file. When writing to a formatted file, data arrays are written with an
array-control record that meets the specifications of the Modular Model real
array reader U2DREL. The specifications for U2DREL are shown below (McDonald
and Harbaugh, 1988, p. 14-4).

Data: LOCAT CNSTNT
Format: 110 F10.0

FMTIN IPRN
5A4 110

LOCAT is a Fortran unit number. When the sign of LOCAT is negative, data are
unformatted. The MMSP program will write the same Fortran unit number for
LOCAT that is given with the WRIT command. CNSTNT is a multiplier. MMSP
will set CNSTNT to zero, indicating that the data are not multiplied by a
constant. FMTIN is a Fortran format. MMSP will place a Fortran format on
the array-control record that corresponds to the format specified with the
WRIT command. IPRN is a code that indicates whether the data array should be
printed when it is read by U2DREL. MMSP always sets IPRN to negative one,
which specifies that the data array should not be printed.

If unformatted data are written with the WRIT command, no array-control
record is written with the data array. An example array-control record that
could be used to read the unformatted data will be shown in the printed
output from the WRIT command.

INPUT INSTRUCTIONS

Field: Command DSN LAYER MASK UNIT FMT-CODE MISSING-VALUES

Beginning column: 1 6 13 16 23 26 30

Data Format: WRIT A6 12 16 12 13 3F10.0

To create a disk file containing a data array using the MMSP program,
include the WRIT command in the command file, specify the DSN of the data

35

array to be written, and the Fortran unit number to be used for writing the
file. The operation of the WRIT command may be controlled by using any
combination of the following options.

A specific layer of a three-dimensional data array may be written by
specifying the layer number with the WRIT command. If the layer number is
blank or zero, all layers are written.

The three masks: zero, IBOUND, and UBOIND, discussed in chapter 2,
Subsetting Data Arrays, may be used with the WRIT command. Individual masks
are enabled or disabled by placing integer values in the appropriate mask
fields (fig. 3). When a value is masked by the WRIT command, it is replaced
by one of the three missing-value indicators. The three masks have a
one-to-one correspondence with the three missing-value indicators. For
example, when a zero mask is requested by placing a non-zero value in columns
16-17, all zero values in the data array are replaced by the first missing
value indicator during printing. By default, the missing-value indicators
are defined by MISVAL.INS, as shown in attachment A. The default values for
the missing-value indicators may be overridden for the duration of the
command by specifying the desired numerical values in the MISSING-VALUES
field of the WRIT command.

The Fortran format of the data written to the file can be chosen from
table 9. To select a Fortran format, the corresponding print-format code
should be entered into the FMT-CODE field of the WRIT command. The default
is to use print-format code zero, Fortran format (11G10.4). Care should be
taken to select a Fortran format that will display the desired precision
without overflowing the output field width. When in doubt about which code
to use, print-format codes zero, one, and two are advised; these codes
specify the use of the Fortran general format control. If a negative value
for the print-format code is entered, the data will be written to an
unformatted file.

SAMPLE INPUT

Input Coamand File

EXAMPLE OF WRIT

USED TO OUTPUT

TITL

READ^
TITL
WRIT

READING

'HEAD
1
O

WRITING
HEAD

COMMAND

DATA TO A FORTRAN UNIT NUM

COMPUTED
1
5

2
0
1

COMPUTED
01 000000

BER

HEADS FOR THE END OF THE FIRST TIME STEP
2
5

1
HEADS ,
55

3 3
0 5

LAYER 1

4455
0505

6
0

FOR USE IN A CONTOURING

6
5

PROGRAM

7
0

36

SAMPLE OUTPUT

Output Print File

SAMPLE -3 LAYERS, 15 ROWS, 15 COLUMNS, STEADY STATE, CONSTANT HEADS COLUMN 1, LAYERS 1 AND 2, RECHARGE, HELLS AND DRAINS
EXAMPLE OF WRIT COMMAND,
USED TO OUTPUT DATA TO A FORTRAN UNIT NUMBER

WRITING COMPUTED HEADS, LAYER 1 FOR USE IN A CONTOURING PROGRAM

Processing: WRIT HEAD 01 000000 55

WRITING OF : HEAD - COMPUTED HEADS
LAYER 1
STRESS PERIOD 1
TIME STEP 1
ON UNIT: 55
USING FORMAT CODE:

Output Disk File

55
0.0000

117.4
0.0000

115.7
0.0000

112.0
0.0000

106.1
0.0000
97.29

0.0000
93.03

0.0000
88.60

0.0000
81.99

0.0000
73.93

0.0000
70.39

0.0000
66.43

0.0000
67.12

0.0000
67.22

0.0000
71.64

0.0000
74.29

0.(10G11.4)
24.95
121.3
24.45
119.6
23.45
116.1
21.92
110.7
19.73
103.1
16.51
94.23
11.55
91.66
3.483
85.00
10.54
73.79
14.62
72.44
17.11
65.45
18.68
68.50
19.67
65.75
20.27
73.18
20.56
76.22

44.01
124.3
43.10
122.7
41.30
119.6
38.61
114.9
34.92
108.8
29.50
102.1
21.10
96.43
6.832
89.27
19.11
80.84
25.86
76.72
29.96
72.22
32.56
72.29
34.24
71.90
35.27
75.84
35.78
78.22

59.26
126.4
57.98
124.9
55.43
122.1
51.75
117.9
47.32
112.5
40.90
106.4
31.21
99.82
18.25
91.72
28.12
80.17
35.38
78.26
40.01
71.04
43.07
73.46
45.14
70.35
46.48
77.03
47.16
79.66

-1
71.82
127.4
70.17
126.1
66.78
123.4
61.79
119.4
57.69
114.3
51.30
108.4
41.40
101.8
26.30
94.33
36.92
86.49
43.49
81.79
47.78
77.62
50.81
76.85
53.01
76.48
54.61
79.09
55.48
80.82

82.52

80.57

76.21

68.03

66.74

61.21

51.84

36.97

45.27

50.11

53.24

55.92

58.04

60.08

61.26

91.91

90.12

86.51

81.34

77.09

71.19

63.08

52.59

52.95

54.93

55.81

58.33

59.91

63.17

65.02

100.0

98.40

95.20

90.75

85.76

79.85

72.68

64.31

55.38

57.55

53.33

58.47

56.75

64.52

67.52

106.9

105.3

102.2

97.64

92.22

86.47

79.95

72.52

65.15

62.95

60.27

61.93

62.59

67.25

69.94

112.6

111.0

107.6

102.5

96.15

90.82

84.92

77.25

66.07

65.55

59.29

63.18

60.91

68.79

72.01

COMMENTS

In this example, Fortran unit 55 had been opened with job control
directives prior to beginning the MMSP program. The READ command was used to
read the computed heads calculated and written to an unformatted file by the
Modular Model. The output of the READ command is in a previous section of
this report. 37

Descriptive Statistics

DISCUSSION

Often a computed statistical description of a data array is desirable.
These statistics can be used to provide a quick check of the validity of data
that are input to the Modular Model. Also, statistics can be used to
summarize data arrays computed and written by the Modular Model.

When statistics are computed by the MMSP program, the following values
are written to the print file: arithmetic mean, mean absolute value,
geometric mean, harmonic mean, root mean square, variance, minimum value,
maximum value, sum of values, standard deviation, mean deviation, the number
of non-missing values, moment-skewness coefficient, lower quartile, median,
upper quartile, and the non-parametric skewness coefficient.

Printed at the end of the statistical summary are the row, column, and
layer locations of the minimum, maximum, and median values in the model grid.
When the values for the minimum, maximum, and median are not unique, the
program prints the location of the first node in the simulation with the
corresponding value. When an even number of values are summarized, the
locations of the two nodes whose values are averaged to compute the median
are printed. When a two-dimensional data array is summarized using the STAT
command, layer one always will be printed for the layer location.

Variance is computed by summing the squares of the deviations of the
observations from the mean and dividing by the number of observations minus
one. The moment-skewness coefficient is computed by the following formula
(Chow, Y.T., 1964).

N (x - x) 3
SKEWNESS =

(N-l) (N-2) S3

where N = number of observations!,
x = mean value, and
S = standard deviation.

Non-parametric skewness is computed by the following formula (David, H.A.,
1962).

SKEWNESS =
> - 9 (P)25 ^ ^r50'

P - p
r 7 5 r 25

where P75 = upper quartile,
P50 = median, and
P25 = lower quartile.

38

The MMSP program will not compute some statistics when specific
conditions occur. If any of the values in the data array are less than or
equal to zero geometric and harmonic means are not computed. If the number
of observations is less than 3 or the standard deviation is zero the
moment-skewness coefficient is not computed. If the upper and lower
quartiles are equal the non-parametric skewness is not computed. When these
conditions occur, the MMSP program prints a warning message and sets the
value of the statistic to zero.

INPUT INSTRUCTIONS

Field: Command DSN LAYER MASK

Beginning column: 1 6 13 16

Data Format: STAT A6 12 16

To produce descriptive statistics of a data array, include the STAT
command in the command file and specify the DSN of the data array to be
summarized. The operation of the STAT command may be controlled by any
combination of the options described in the following paragraphs.

A specific layer of a three-dimensional data array may be described by
specifying the layer number with the STAT command. If the layer number is
blank or zero all layers are included in the statistical analysis.

The three masks, zero, IBOUND, and UBOUND, discussed in chapter 2,
Subsetting Data Arrays, can be used to exclude values from the statistical
summary. Individual masks are enabled or disabled by placing integer values
in the appropriate mask fields (fig. 3). Unlike the PRIN and WRIT commands,
the use of the masks does not cause the missing-value indicators to replace
values in the data array. Instead, when a value is masked during the calcu
lation of descriptive statistics, the value is removed from the set of data
used in the computation of the statistics. When masking is performed, a
summary of the number of values excluded from the analysis by each mask is
printed.

SAMPLE INPUT

Input Conaand File

EXAMPLE OF THE STAT COMMAND

USED TO PRODUCE DESCRIPTIVE STATISTICS OF A DATA ARRAY

TITL RECHARGE APPLIED TO INACTIVE AND CONSTANT HEAD NODES
**** 1122334455667
****5 0505050505050
STAT RECH 00 OO-10O

39

SAMPLE OUTPUT

Output Print File

SAMPLE -3 LAYERS, 15 ROWS, 15 COLUMNS, STEADY STATE, CONSTANT HEADS COLUMN 1, LAYERS 1 AND 2, RECHARGE, WELLS AND DRAINS
EXAMPLE OF THE STAT COMMAND
USED TO PRODUCE DESCRIPTIVE STATISTICS OF A DATA ARRAY

RECHARGE APPLIED TO INACTIVE AND CONSTANT HEAD NODES

Processing: STAT RECH 00 00-100

STATISTICS FOR : RECH - RECHARGE RATE
ALL LAYER(S)
STRESS PERIOD 1
TIME STEP 1

Masking was performed on RECH

30 points remain out of 675

645 points excluded which were active nodes

Zero or negative values present in matrix, therefore geometric and harmonic means were not computed

ARITHMETIC ABSOLUTE VALUE
MEAN MEAN

0.150000E-07 0.150000E-07

MINIMUM
0.000000

COEFFICIENT
OF SKEWNESS
-0.381576E-13

MAXIMUM
0.300000E-07

LOWER
QUARTILE

0 . 000000

GEOMETRIC
MEAN

0.000000

SUM OF
VALUES

0.450000E-06

MEDIAN
0.150000E-07

HARMONIC
MEAN

0.000000

STANDARD
DEVIA1 ION
0.152564E-07

UPPER
QUART ILE

0.300000E-07

ROOT MEAN
SQUARE

0.212132E-07

MEAN
DEVIATION
0.150000E-07

NON-PARAMETRIC
SKEWNESS

0.000000

VARIANCE
0.232759E-15

NUMBER OF
VALUES

30

LOCATION
STATISTIC ROW COLUMN LAYER

MINIMUM 15 1 2

MAXIMUM 13 1 1

MEDIAN 1 1 2

MEDIAN 15 1 1

40

Frequency Analysis

DISCUSSION

Frequency analysis can be used to check the distribution of values in a
data array. Frequency analysis is useful for making a quick check of data
arrays that are input to or computed and written by the Modular Model.

The method employed by the MMSP program to perform a frequency analysis
sorts the data array in ascending order of magnitude, organizes the values
into classes bounded by an upper and lower magnitude, counts and prints a
table of the number of values in each of the classes, and prints a histogram
of the distribution of data in each of the classes.

The boundaries of the classes into which data values are grouped can be
defined using one of three methods with the MMSP program. By the first
method, the program computes an arithmetic progression for the class
boundaries beginning with the minimum data value. By the second method, the
program computes a logarithmic progression of class boundaries. With the
third method, the user specifies the class boundaries that are to be used in
the frequency analysis. Regardless of which method is selected, the MMSP
program requires that at least three and no more than 20 classes be used for
tallying the data values.

INPUT INSTRUCTIONS

NUMBER OF
Field: Command DSN LAYER MASK CLASSES

Beginning column: 1 6 13 16 23

Data Format: HIST A6 12 16 13

To produce a frequency analysis of a data array, include the HIST
command in the command file and specify the DSN of the data array to be
summarized. The operation of the HIST command may be controlled by any
combination of the following options.

A specific layer of a three-dimensional data array may be analyzed by
specifying the layer number with the HIST command. If the layer number is
blank or zero all layers are included in the frequency analysis.

The three masks, zero, IBOUND, and UBOUND, discussed in chapter 2,
Subsetting Data Arrays, can be used to exclude values from the frequency
analysis. Individual masks are enabled or disabled by placing integer values
in the appropriate mask fields (fig. 3). As with the STAT command, when a
value is masked during the frequency analysis, the value is removed from the
set of data used in the computations. When masking is performed, a summary
of the number of values excluded from the analysis by each mask is printed.

41

From 3 to 20 classes can be selected. If an arithmetical progression of
class boundaries is desired, the number of classes should be specified as a
positive integer. The MMSP program will compute the class boundaries for the
number of classes entered. The class boundaries will be equally spaced
between the maximum and minimum values.

If a logarithmic progression of class boundaries is desired, the number
of classes should be specified as a negative integer. In this case, the
program computes the number of class boundaries and the value of the negative
integer entered with the HIST command has no effect on the class boundary
computations.

If specific class boundaries are desired, the class boundaries first
must be defined using the READ command for the DSN CLASS. (Refer to the
discussion of the READ command in this chaptpr.) To use these specific
classes in the frequency analysis, the numbefr of classes should be specified
as a number between zero and three. Any of the values: 0, 1, or 2 may be
used to indicate that user-specific class boundaries are to be used. When
one of these values is entered, the number of classes used for the frequency
analysis will be one greater than the number of cut points entered with the
READ command.

If the number-of-classes field is blank or zero, and if user-specified
cut points have not been defined using the READ command, the MMSP program
will print a message and compute 20 arithmetically spaced classes.

SAMPLE INPUT

Input Command File

EXAMPLE OF HIST COMMAND

USED

5|C df* df* 5|C ,

READ
TITL
HIST

TO PERFORM FREQUENCY ANALYSIS ON A DATA ARRAY

1
5 0
HEAD
FREQUENCY
HEAD 00

1 2
5 O

1

2
5

1
DISTRIBUTION
OOO10O

3
O

OF

3 4
5 O

4
5

COMPUTED HEADS:

5
0

ALL

5
5

LAYERS ,

6
O

6
5

ACTIVE

7
O

NODES

42

SAMPLE OUTPUT

Output Print File

SAMPLE- 3 LAYERS, 15 ROWS, 15 COLUMNS, STEADY STATE, CONSTANT HEADS COLUMN 1, LAYERS 1 AND 2, RECHARGE, WELLS AND DRAINS
EXAMPLE OF HIST COMMAND
USED TO PERFORM FREQUENCY ANALYSIS ON A DATA ARRAY

FREQUENCY DISTRIBUTION OF COMPUTED HEADS: ALL LAYERS, ACTIVE NODES

Processing: HIST HEAD 00 000100

HISTOGRAM FOR : HEAD - COMPUTED HEADS
ALL LAYER(S)
STRESS PERIOD 1
TIME STEP 1

Masking was performed on HEAD

645 points remain out of 675

30 points excluded that were inactive or constant head nodes
User-specified classes requested, but have not been read; using 20 arithmetic computed classes

CLASS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

GREATER THAN LESS THAN OR EQUAL TO

0.433095
7.48942
14.5457
21.6021
28.6584
35.7147
42.7711
49.8274
56.8837
63.9400
70.9964
78.0527
85.1090
92.1653
99.2217
106.278
113.334
120.391
127.447

0.433095
7.48942
14.5457
21.6021
28.6584
35.7147
42.7711
49.8274
56.8837
63.9400
70.9964
78.0527
85.1090
92.1653
99.2217
106.278
113.334
120.391
127.447

POPULATION

1.
18.
10.
32.
19.
27.
24.
29.
50.
68.
64.
81.
46.
43.
22.
29.
28.
27.
27.

Output Print File Continued

FREQUENCY-
81 *
79 *
77 *
75 *
73
71
69
67
65
63
61
59
57
55
53
51
49
47 *
45 *
43 *
41 *
39
37
35
33
31
29
27
25
23
21
19 *
17 *
15 *
13 *
11 *
9 *
7 *
5 *
3 *
1 *

CLASS 10 11 12 13 14 15 16 17 18 19 20

HISTOGRAM FOR : HEAD - COMPUTED HEADS
ALL LAYER(S)
STRESS PERIOD 1
TIME STEP 1

COMMENTS

In this example, the READ command was uj?ed to read the binary computed
heads calculated and written by the Modular Model. The printed output of the
MMSP READ command was shown previously, and j.s not repeated here. The HIST
command did not specify the number of classes to be used, the program read
this field as a zero, and found that user-specified cut points had not been
read. Therefore, 20 arithmetically-spaced classes were used.

44

Comparison of Data Arrays

DISCUSSION

When checking for errors in Modular Model input data, it can be useful
to determine if values in a data array exceed some value. For example, when
simulating a confined aquifer, a modeler might wish to ensure that none of
the values for the storage coefficient are greater than 0.005. Another
example of validating the Modular Model input data is to check if the
altitudes of the aquifer bottom is greater than the altitudes of the aquifer
top at any model nodes.

Likewise, a modeler can test hypotheses regarding the results of the
simulation by performing logical comparisons between data arrays. An example
is to compare the computed heads for consecutive time steps to determine
where heads have decreased.

The COMP command performs a node-by-node comparison of the values in two
data arrays and produces a tabular listing of the row-column-layer locations
and values of model nodes that pass the logical comparison test.

INPUT INSTRUCTIONS

Field: Command DSN1 LAYER OPERATOR DSN2 LAYER MASK LIMIT

Beginning column: 1 6 13 16 19 26 29 36

Data Format: COMP A6 12 A2 A6 12 16 14

To compare two data arrays, include the COMP command in the command file
and specify the DSN for each of the two data arrays in the DSN1 and DSN2
fields. Specify a logical operator for the comparison in the OPERATOR field
of the COMP command. Valid logical operators available for use with the COMP
command are shown in the following list. Each operator may be expressed by
any of two or three syntaxes in the COMP command.

LOGICAL OPERATOR OPERATION

= or EQ equal to
~= or NE not equal to
< or LT less than
> or GT greater than

<= or =< or LE less than or equal to
>= or => or GE greater than or equal to

45

When both data-set names specified in a COMP command are the same, and
the data arrays are stored in either the two-dimensional or three-dimensional
stack, the program will search the stacks to find whether there are two data
arrays with the same DSN stored in the same stack. When two arrays with same
DSN are requested and found in a stack, the program will use both data arrays
for the comparison. Time-series analysis of data arrays output by the
Modular Model may be performed by using this capability. This searching
procedure is described in chapter 2, Data-set Names.

For example, a modeler might want to determine where water levels
decreased after a stress was applied during a transient simulation. Two READ
commands would be used to read the computed leads. The first READ command
would read HEAD for the final time step of the stress period before the
stress was applied, and the second READ command would read HEAD for last time
step of the stress period when the stress was applied. Two data arrays named
HEAD would be on the three-dimensional stack. The comparision command:

COMP HEAD 00 < HEAD 00 000100

would list all active nodes where heads had decreased.

The operation of the COMP command may b
of the following options.

5 controlled by any combination

If the layer number is blank or

The comparision may be restricted to a specific layer of a three-dimen
sional data array by specifying the layer number adjacent to the
corresponding DSN field of the COMP command.
zero all layers are included in the comparison. To compare two data arrays,
both arrays must contain the same number of values. Thus, two two-dimen
sional data arrays, two three-dimensional data arrays, or two layers may be
compared on a node-by-node basis.

All layers in the model simulation may not exist for the data arrays:
altitude of the aquifer top (TOP), altitude of the aquifer bottom (BOT),
computed heads (HEAD), and computed drawdown (DRAWDN); depending upon the
specifications of the layer type array (LAYCiON), and the save-flag array
(IOFLG). When a COMP command specifies layer zero for both data arrays, and
a layer does not exist for one of the data arrays, the program skips the
layer and resumes the comparison for the next layer that is present in both
data arrays.

If the COMP command specifies a specific layer, and the layer is not
present for the corresponding data array, the command prints an error message
and the comparison is not performed.

46

The two masks: IBOUND and UBOUND, discussed in chapter 2, Subsetting
Data Arrays, can be used to exclude values from a comparison. Individual
masks are enabled or disabled by placing integer values in the appropriate
mask fields (fig. 3). When a value is masked during the comparison, the
logical testing of the values of the two data arrays is skipped. When
masking is performed, a summary of the number of values excluded from the
comparison is printed. The zero mask is not available for use with the COMP
command, because there are two data arrays. If the zero mask is requested, a
warning message will be printed and the comparison will continue without
using a zero mask.

Care should be taken with the specifications of the COMP command for
simulations with a large number of model nodes. An inappropriately prepared
comparison command can produce a huge print file. The LIMIT field of the
COMP command may be used to control the maximum number of nodes that will be
printed by the program when the comparision condition is true. The number of
nodes printed by the COMP command is not limited if blanks or zero is entered
for the LIMIT field.

SAMPLE INPUT

Input Cowiand File

EXAMPLE OF COMP COMMAND, USED TO COMPARE ONE DATA ARRAY WITH ANOTHER.

EXAMINING LAYER ONE, ACTIVE NODES

**** i i
****5 O 5
READ RIFACE
READ LOFACE
TITL WHERE IS THE
COMP RIFACE 01 GT

2233
0505
1 1
1 1

LEFT->RIGHT FLOW
LOFACE 01 000100

445566
050505

PREDOMINANT OVER DOWNWARD FLOW?

7
0

47

SAMPLE OUTPUT

Output Print File

SAMPLE -3 LAYERS, 15 ROWS, 15 COLUMNS, STEADY STATE, CONSTANT HEADS COLUMN 1, LAYERS 1 AND 2, RECHARGE, HELLS AND DRAINS
EXAMPLE OF COMP COMMAND, USED TO COMPARE ONE DATA ARRAY WITH ANOTHER.
EXAMINING LAYER ONE, ACTIVE NODES

WHERE IS THE LEFT->RIGHT FLOW PREDOMINANT OVER DOWNWARD FLOW?

Processing. COMP RIFACE 01 GT LOFACE 01 000100

COMPARISON OF : RIFACE - RIGHT-FACE CBC FLOW
LAYER 1
STRESS PERIOD 1
TIME STEP 1

AGAINST : LOFACE - LOWER-FACE CBC FLOW
LAYER 1
STRESS PERIOD 1
TIME STEP 1

WHERE : RIFACE GT LOFACE

COMPARISON TEST BYPASS CONDITIONS:

when model boundary nodes are inactive or constant head

ROW COLUMN

9
11
11
11
11
13
13
13
13

13
7
9

11
13
7
9

11
13

LAYER

1
1
1
1
1
1
1
1
1

RIFACE LOFACE
VALUE

0.153772
0.506731
0.204340
0.212355
0.262021
0.657696
0.355808
0.317563
0.343022

9 nodes identified
15 nodes ignored via mask options

675 nodes in data set

LAYER

1
1
1
1
1
1
1
1
1

VALUE

0.338018E-001
0.633933E-001
0.309618E-001
0.302935E-001
0.296655E-001
0.631353E-001
0.317633E-001
0.309513E-001
0.301595E-001

COMMENTS

In this example, the READ command was used to read the binary
cell-by-cell flow terms computed and written by the Modular Model,
printed output of the MMSP READ command is not shown here.

The

48

Mathematical Operations

DISCUSSION

Some applications of the MMSP program may require the computation of a
data array by a mathematical operation. This capability is provided with the
MATH command. Using the MATH command, the drawdown may be calculated between
any two time steps where heads have been saved during the simulation. With
another application of the MATH command, the saturated thickness in an
unconfined aquifer may be calculated by subtracting the altitude of the head
from the altitude of the aquifer bottom.

The MATH command uses one or two data arrays and a mathematical operator
to compute a new data array. The resultant data array is placed on either
the two-dimensional or the three-dimensional stack, depending upon the size
of the array. The computed data array may be used in subsequent MMSP
commands for further analysis. The MATH command does not perform any
analysis or printing of the computed data array.

Data arrays are computed by the MATH command by performing the desired
calculation on a node-by-node basis. Therefore, when a new data array is
calculated from two data arrays, both input arrays must contain the same
total number of model nodes.

The MATH command can be used to copy well pumpage rates (WELL), recharge
rates (RECH), or recharge fluxes (RECHF) from reserved storage locations to
the stack storage locations. (Refer to chapter 2, Modular Model Data Arrays
and Auxiliary Data Arrays for a discussion of storage locations in the MMSP
program.) For example, it would be necessary to copy RECH and give it a
different DSN, in order to compare recharge rates from one stress period to
another. The MATH command can copy the data array onto the stack by
multiplying the desired data array by one, or by adding zero. Then the READ
command can be used to read recharge rates for another stress period and the
two data arrays can be compared.

INPUT INSTRUCTIONS

Fields: Command DSN1 LAYER OPERATOR DSN2 LAYER DSN3 ARRAY-NAME

Beginning column: 1 6 13 16 19 26 29 36

Data format: MATH A6 12 A2 A6 12 A6 A24

49

To calculate a data array, include the MATH command in the command file
and specify the DSN for each data array needed in the DSN1 and DSN2 fields.
Specify an arithmetic operator for the computation in the OPERATOR field of
the MATH command. Valid arithmetic operators for use with the MATH command
are shown below. Each operator may be expressed by either of the two
syntaxes shown.

ARITHMETIC OPERATOR

or AD
or SU
or MU
or DI

** or EX
II or AB

'ERATION

addition
subtraction
multiplication
division
exponentiation
absolute value

Only the absolute value operator does not require two data-set names.
When the absolute value operator is used, the DSN of the array to be operated
upon should be placed in the DSN1 field.

The DSN3 field must be used with all operators to name the new data
array that will be placed on a stack. This DSN will be used in subsequent
commands when referring to the calculated data array. Optionally, a textual
description of the calculated data array may be supplied in the ARRAY-NAME
field. This textual description will be printed with subsequent commands
that use the calculated data array. The ARRAY-NAME is printed when the
calculated data array is used during an operation and is not used by the
program for identifying the array. The program uses the DSN3 field for
identifying the array.

When both data-set names input to the MATH command are the same, and the
data arrays are stored in either the two-dimensional or three-dimensional
stack, the program will search the stacks to find whether there are two data
arrays with the same DSN stored in the same stack. When two arrays with same
DSN are requested and found in a stack, the program will use both data arrays
for the computation. This searching procedure is described in chapter 2,
Data-set Names.

To compute a two-dimensional data array from a layer of one or two
three-dimensional data arrays, specify the layer number adjacent to the
corresponding DSN field of the MATH command. If the layer number is blank or
zero all layers are included in the computation.

50

All layers in the model simulation may not exist for the data arrays:
altitude of the aquifer top (TOP), altitude of the aquifer bottom (BOX),
computed heads (HEAD), and computed drawdown (DRAWDN); depending upon the
specifications of the layer type array (LAYCON), and the save-flag array
(IOFLG). When a MATH command specifies layer zero for both data arrays, and
a layer does not exist for one of the data arrays, the program fills the
layer in the calculated data array with zeroes, prints a message, and resumes
the computation for the next layer that exists in both data arrays.

If the MATH command specifies a layer that does not exist for the
corresponding data array, the command prints an error message and the
computation is not performed.

SAMPLE INPUT

Input Coanand File

EXAMPLE OF MATH COMMAND ,

VERTICAL VELOCITY = LOWER

**** 1 1
****5 o 5
READ LOFACE
TITL CALCULATING
MATH LOFACE 01
STAT SPEED 01

2 2
0 5
1 1

VERTICAL
/ AREA

1

USED TO CALCULATE A DATA ARRAY:

FACE FLOW / CELL AREA

3
0

VELOCITY
01 SPEED

3 4
5 0

FOR LAYER
VERTICAL

455
505

1 : SPEED
VELOCITY

667
050

51

SAMPLE OUTPUT

Output Print File

SAMPLE 3 LAYERS, 15 ROWS, 15 COLUMNS, STEADY STATE, CONSTANT HEADS COLUMN 1, LAYERS 1 AND 2, RECHARGE, WELLS AND DRAINS
EXAMPLE OF MATH COMMAND, USED TO CALCULATE A DATA ARRAY:
VERTICAL VELOCITY = LOWER FACE FLOW / CELL AREA

CALCULATING VERTICAL VELOCITY FOR LAYER 1: SPEED

Processing: MATH LOFACE 01 / AREA 01 SPEED VERTICAL VELOCITY

COMPUTATION OF : SPEED - VERTICAL VELOCITY

FROM : LOFACE - LOUDER-FACE CBC FLO*
LAYER 1
STRESS PERIOD 1
TIME STEP 1

DIVIDED BY : AREA - AREA OF CELLS
LAYER 1

TWO-DIMENSIONAL STACK CONTENTS AFTER MATH COMMAND

STACK DATA SET STRESS TIME
POSITION NAME PERIOD STEP DESCRIPTION

SPEED - VERTICAL VELOCITY

COMMENTS

This example shows the use of the READ,
examine of vertical flow velocities between
output from the READ and STAT commands are not shown. The vertical velocity
is computed by dividing the lower-face flow

MATH, and STAT commands to
layers 1 and 2. The printed

by the area for each cell.
Units of velocity are determined by the unites used in the simulation. In
the sample simulation, distance is expressed in feet and time is expressed
in seconds. Therefore the computed velocities have units of feet per
second.

52

Subsetting Computed Heads

DISCUSSION

When analyzing computed heads, it is frequently useful to extract the
simulated values of head at selected model nodes for every time step when
heads were saved. These values can be entered into a statistical package
for verification analysis or into a graphical display program for
hydrographs of observed versus computed head.

The MMSP HEAD command will write computed heads to a Fortran unit for
selected model nodes from the binary output file created by the Modular
Model. Up to six model nodes may be specified with each HEAD command, and
the command may be repeated as many times as needed.

When using the HEAD command, the modeler must provide the number of a
Fortran unit that can be used for writing the data. The Fortran unit must
have been opened for writing by job control directives.

The HEAD command will write a record to the output file unit for each
model node specified, for every time step. Each record consists of the row,
column, layer, stress period, time step, time since the beginning of the
simulation, time since the beginning of the stress period, and the computed
head. For some time steps, computed heads may not be written by the Modular
Model, due to the specifications given for IOFLG in the output-control
package. In this situation, the HEAD command writes a record for each
requested model node, with the value for computed head set equal to the
first missing value indicator, and writes a message to the print file.

Several steps should be taken when preparing the specifications for the
Modular Model, if the MMSP HEAD command will be used with the results of the
simulation. Job control directives must open a file for saving unformatted
head data and the Fortran file unit number of this file should be provided
for the variable IHEDUN in the output-control data for the Modular Model.
Also, values for the variables INCODE, IHDDFL, HDSV must be set properly for
each time step in the output-control data.

INPUT INSTRUCTIONS

up to six node locations
Field: Command UNIT (ROW-COLUMN-LAYER)

Beginning column: 1 6 9, 21, 33, 45, 57, 69

Data Format: HEAD 12 6(13,IX,13,IX,13,IX)

To create a disk file containing computed heads at selected model nodes
for all time steps, include the HEAD command in the command file, and
specify the number of a Fortran unit to be used for writing the data.
Specify the row-column-layer locations of the model nodes for which computed
heads are to be recorded.

53

SAMPLE INPUT

Input Command File

EXAMPLE OF HEAD COMMAND

USED TO OUTPUT SELECTED HEAD DATA TO A FORTRAN UNIT NUMBER

TITL EXTRACTING COMPUTED HEADS FOR THE FIRST TIME STEP
**** 1122334455
****5 O5O5O5O5O5
HEAD 55 001 OO1 OO1 5 11 3 12 12 1

SAMPLE OUTPUT

Output Print File

SAMPLE 3 LAYERS, 15 ROWS, 15 COLUMNS, STEADY STATE, CONSTANT HEADS COLUMN 1, LAYERS 1 AND 2, RECHARGE, WELLS AND DRAINS
EXAMPLE OF HEAD COMMAND
USED TO OUTPUT SELECTED HEAD DATA TO A FORTRAN UNIT NUMBER

EXTRACTING COMPUTED HEADS FOR THE FIRST TIME STEP

Processing: HEAD 55 001 001 001 5 11 3 12 12 1

WRITING OF : COMPUTED HEADS
ON UNIT : 55

USING FORMAT : (5I5.3G15.6E2)
1 TIME STEP(S)
3 NODES

ROW COLUMN LAYER
1 1 1
5 11 3

12 12 1

Output Disk File

11111 86400.0 86400.0 0.000000
5 11 3 1 1 86400.0 86400.0 77.4623

12 12 1 1 1 86400.0 86400.0 68.4991

COMMENTS

In this example, Fortran unit 55 had be^n opened with job control
directives prior to beginning the program, the example problem is a
steady-state simulation, therefore head data for a single time step were
written by the HEAD command.

54

Resetting the Model-boundary Array

DISCUSSION

During a simulation, the Modular Model changes an active model node to
an inactive node when the saturated thickness at the node becomes zero.
When the model deactivates a model node, it sets the head at the node equal
to 1030 (McDonald and Harbaugh, 1988, p. 5-75). During post-processing,
this large value for head can cause erroneous calculations, unless it is
excluded from the analysis using an updated IBOUND mask to indicate where
nodes have been deactivated.

The MMSP program provides the REBO command for updating the IBOUND
array by resetting the values for deactivated model nodes to zero. To
perform this operation, computed heads must be saved to an unformatted file
by the Modular Model. Several steps should be taken when preparing the
specifications for the Modular Model, if the MMSP REBO command will be used
with the results of the simulation. Job control directives must open a file
for saving unformatted head data and the Fortran file unit number of this
file should be provided for the variable IHEDUN in the output-control
package of the Modular Model. Also, values for the variables INCODE,
IHDDFL, HDSV must be set properly for each time step in the output-control
package.

The REBO command can be specified for any stress period and time step
in the simulation when computed heads were saved. The REBO command will
write a table of all node locations that were deactivated by the specified
stress period and time step. Because the Modular Model does not re-wet
nodes during a simulation, the listing of nodes produced by the REBO command
indicates all nodes that have gone dry during any time step before or during
the specified time step.

INPUT INSTRUCTIONS

STRESS TIME
Field: Command PERIOD STEP

Beginning column: 1 69

Data Format: REBO 12 12

To reset the model-boundary array, include the REBO command in the
command file, and specify the stress period and time step to be used.

55

SAMPLE INPUT

[nput Conmand File

EXAMPLE OF REBO COMMAND

USED TO UPDATE THE MODEL-BOUNDARY ARRAY (I

**** 1122
****5 O 5 O 5
REBO 1 1

334
O 5 O

BOUND)

4 5
5 0

5667
5050

SAMPLE OUTPUT

Output Print File

SAMPLE- 3 LAYERS, 15 RO*S, 15 COLUMNS, STEADY STATE, CONSTANT HEADS COLUMN 1, LAYERS 1 AND 2, RECHARGE, «ELLS AND DRAINS
EXAMPLE OF REBO COMMAND
USED TO UPDATE THE MODEL-BOUNDARY ARRAY (IBOUND)

Processing: REBO 1 1

RESETTING OF : MODEL-BOUNDARY ARRAY
FOR STRESS PERIOD : 1

TIME STEP : 1

THE FOLLOWING NODES HAVE GONE DRY

RO* COLUMN LAYER

0 NODE(S) «ENT DRY

COMMENTS

In this example, no nodes were deactivated during the steady-state
simulation. Therefore, the REBO command had I no effect on the model-boundary
array.

56

Defining Layer Thickness

DISCUSSION

The THIC command defines the thickness of model layers. Layer thick
ness is defined in a manner analogous to the cell width along rows (DELR)
and columns (DELC) in the block-centered flow package of the Modular Model.
Layer thickness is given for each layer in the simulation. Accordingly,
each model node is located in the center of the cell defined by the
corresponding cell widths and layer thickness.

The VECT command of the MMSP program calculates flow vectors for nodes
in the simulation grid that intersect a plane defined with the SLIC command.
(The VECT and SLIC commands are discussed in subsequent sections of this
chapter.) Before defining a plane that does not intersect the simulation
grid horizontally, it may be useful to define the thickness of the model
layers. Only the SLIC and the VECT commands of the program use layer
thicknesses for computations. The program uses the thicknesses of model
layers provided with the THIC command for determining the vertical distance
between nodes when calculating the positions of flow vectors. It is not
necessary to enter the "actual 11 thickness of the layers being simulated with
the THIC command. In some cases it may be useful to alter the vertical
positioning of flow vectors within a cross-section using the THIC command.

Although the Modular Model does not explicitly use a value for layer
thickness and layer thickness can be variable throughout the simulation
grid, the MMSP program uses a single value of layer thickness for each
layer, which is used for every node in the layer. This inconsistency should
be of no concern to the modeler. The layer thickness data are used only by
the MMSP program for placement of flow vectors in cross-sections that slice
through more than one layer of the model grid. The alternative would be to
require the modeler to enter a layer-thickness value for every node in the
model grid, which could be extremely tedious for a large simulation.

Layer thickness values should be specified in the same units that are
used for DELR and DELC.

If the THIC command is not used to define the thickness of layers, the
thicknesses of all layers will be given a default value equal to the average
width of cells.

INPUT INSTRUCTIONS

up to seven
Field: Command LAYER-THICKNESSES

Beginning column: 1 6, 16, 26, 36, 46, 56, 66

Data Format: THIC 7CF10.0)

(repeat as necessary until all layers have been given a thickness value)

57

To define the thickness of layers, include the THIC command in the
command file and specify the thickness of each layer in the simulation grid.
Ten columns are provided for the entry of each layer thickness value. Up to
seven layers may be defined on a single THIC command line. If there are
more than seven layers in the simulation, continue specifying layer
thicknesses with another THIC command until all layers have been assigned a
thickness value. The THIC and the comment (****) commands are the only MMSP
commands that may be continued on a subsequent command line.

SAMPLE INPUT

Input Command File

EXAMPLE OF THIC COMMAND

USED TO DEFINE LAYER THICKNESSES

****5
THIC

1122334
0505050

5000 5000 5000

455667
505050

SAMPLE OUTPUT

Output Print File

SAMPLE 3 LAYERS, 15 ROWS, 15 COLUMNS, STEADY STATE, CONSTANT HEADS COLUMN 1, LAYERS 1 AND 2, RECHARGE, WELLS AND DRAINS
EXAMPLE OF THIC COMMAND
USED TO DEFINE LAYER THICKNESSES

Processing: THIC 5000 5000 5000

LAYER LAYER
NUMBER THICKNESS

1 0.500E+04
2 0.500E+04
3 0.500E+04

58

Slicing Data Arrays

DISCUSSION

A slice of a data array is a plane that intersects the model grid. A
plane is defined by any three non-colinear points. A modeler might wish to
define a slice of a model grid for two reasons. First, to compute flow
vectors with the MMSP progam it is necessary to define the plane that
determines which nodes are to be included in the computations. Second, it
can be useful to define a cross-sectional user boundary to be used as a mask
with other MMSP commands. One application of this user-boundary mask is to
calculate the flow through a cross-section.

Both of these objectives can be met with the SLIC command. The SLIC
command will define a slice of the model grid along a column, row, or layer,
or define a slice that intersects the model grid obliquely.

When performing the SLIC command, the program first checks if the three
points lie along a column, row, or layer. If so, then the equation defining
the plane is calculated and the user boundary is determined. Each value in
the user-boundary array corresponding to nodes lying on the plane is set to
one; for all other nodes, the value in the user-boundary array is set to
zero.

If the three points specified with the SLIC command do not lie along
any column, row, or layer, the slice is oblique to the model grid. To
prepare a slice in this case, the program calculates the equations of two
vectors lying in the plane and the equation of a vector normal to the plane.
The equation of a plane is computed from these vectors. The user boundary
is prepared by checking columns along each row on every layer to determine
which nodes are closest to the slicing plane. Thus, on any layer-row
combination, the column closest to the slicing plane is defined within the
user boundary and the corresponding node of the user-boundary array are set
equal to one. All other nodes on the column are outside the user boundary
and are set to zero. The slice of the simulation grid prepared in this
manner may or may not be a good representation of a cross-section of the
study area depending on the fineness of the discretization of space in the
simulation.

When the SLIC command is used, the MMSP program prints the points used
to define the plane and the equation of the slicing plane. The coefficients
of the equation are in the same units that were used to define the width of
cells (such as feet or meters).

59

If an oblique slice is desired, but the ithree points specified with the
SLIC command are colinear, an equation for the plane is indeterminate, an
error message is printed, and a slice is not
plane is defined that does not intersect the

prepared. Similarly, if a
simulation grid, an error

message is written and a slice is not prepared.

INPUT INSTRUCTIONS

three node locations
Field: Command ROW-COLUMN-LAYER

Beginning column: 1 6, 18, 30

Data Format: SLIC 3(13,IX,13,IX,13,IX)

To compute the equation of a slicing plane and prepare a user-boundary
array that slices the model grid, include the SLIC command in the command
file and specify the grid cell locations of three points that define the
plane.

When defining a plane that intersects the simulation grid along a
column, row, or layer an abbreviated method lor specifying the slice may be
used. In this case, only one coordinate needs to be specified. The desired
column, row, or layer is entered in one of the fields provided in the SLIC
command for the first node location. The other two fields for the first
node location and the six fields for the remaining two nodes can be entered
as zeroes or left blank.

SAMPLE INPUT

Input Cowaand File

EXAMPLE OF SLIC COMMAND

USED

SLIC^

TO DEFINE A USER-BOUNDARY WHICH SLICES THE MODEL GRID WITH A PLANE

1
5 O
OOO OOO

122
505

OO1

3344556
0 5 O 5 O 5 O

LAYER ONE

6 7
5 O

60

SAMPLE OUTPUT

Output Print File

SAMPLE 3 LAYERS, 15 ROWS, 15 COLUMNS, STEADY STATE, CONSTANT HEADS COLUMN 1, LAYERS 1 AND 2, RECHARGE, WELLS AND DRAINS
EXAMPLE OF SLIC COMMAND
USED TO DEFINE A USER-BOUNDARY WHICH SLICES THE MODEL GRID WITH A PLANE

Processing: SLIC 000 000 001 LAYER ONE

COMPUTING USER BOUNDARY FROM THE GRID COORDINATES:
ROW COLUMN LAYER

0 0 1
000
000

User boundary defined by layer 1

The equation of the slicing plane is:

0.000 * Y + 0.000 * X + 1.00 * Z = 0.250E+04

COMMENTS

In this example, the SLIC command includes a comment, "LAYER ONE 11 ,
after the specification of the locations of the points. The program ignores
all data written beyond the defined fields of any command. These unused
columns may be used for comments.

61

Computation of Flow Vectors

DISCUSSION

The display of flow-vector diagrams in two dimensions is an extremely
useful technique for illustrating the results of a ground-water simulation,
for checking hypotheses regarding the magnitude and direction of water
movement, and for identifying the potential ground-water flow paths. The
VECT command is provided to calculate flow vectors from data output by the
Modular Model.

To compute flow vectors using the MMSP program, several preparatory
steps are required. When preparing the data that are input to the Modular
Model, it is essential to save the cell-by-cell flow terms from the
block-centered flow package. This is done by specifying a non-zero value
for ICBCFL in the output-control data for each time step to be used for
flow-vector calculation. Additionally, a positive value for IBCFCB must be
entered for the block-centered flow package, identifying the Fortran unit
number for writing the cell-by-cell flow terms. The job control directives
that are used to run the Modular Model and the MMSP programs must open the
file unit specified by IBCFCB.

At least four MMSP commands must be performed successfully prior to the
VECT command. The cell-by-cell flow terms quantifying the flow through the
lower, right, and front faces of model cells must be placed onto the
three-dimensional stack using the MMSP READ Command. Three READ commands
specifying the data-set names LOFACE, RIFACE> and FRFACE, and the desired
stress period and time step should be used to get these data. A SLIC
command must be used to define the plane that is the two-dimensional slice
of the simulation grid for which vectors will be computed. If the slice
intersects more than one layer of the simulation grid, it may be desirable
to specify the thickness of model layers using the THIC command, to control
the vertical distance between nodes on different layers.

Flow vectors can be viewed from one of three orientations. If one
imagines the three-dimensional simulation grid as a box, the three viewing
orientations correspond to looking at the box perpendicular to any two of
the orthogonal axes. Thus, one may look at the box from the front, the top,
or the side. The VECT command provides an option for specifying the
orientation for viewing oblique cross-sections.

Figure 4 illustrates the three possible orientations and the origin of
coordinates used for each one. The Modular Model uses the node on the top
layer, back row, and left column for the origin of coordinates used for
numbering columns, rows, and layers. The MMSP programs writes flow vectors
in length units to correctly account for irregularly spaced simulation
grids. The origin of coordinates used when writing flow vectors on a
two-dimension plane is always in the lower-left corner of the image. Since
most graphical display programs assume the origin of coordinates to be in
the lower-left corner of the illustration, the MMSP program uses the edge of
the bottom-most layer, the left-most column, and the last row of the Modular
Model simulation grid as the origin of the coordinate system.

62

TOP VIE

Modular
Mode I
origin

/ ///// /
\

FRONT VIE

Figure 4. Cartesian reference frames of the three viewing orientations

63

An example oblique slice and two possible viewing orientations of the
cross-section are shown in figure 5. When flow vectors for oblique
cross-sections are created, the program uses the user-specified viewing
orientation to determine which two orthogonal components of flow to use for
the calculations. The equation of the slicing plane is used for selecting
cells from the simulation grid. An example oblique slice and the simulation
grid cells included on the slicing plane are shown in figure 6.

Irrespective of the viewing orientation and the angle of the slicing
plane, the program computes the orthogonal components of flow using
discharges through all six faces of each grid cell on the slicing plane.
The discharge is averaged for each of the three pairs of parallel grid-cell
faces (fig. 7). Zero discharge is computed and written by the Modular Model
for the right-face flow in the last column, i|or the lower-face flow in the
bottom layer, and the front-face flow in the last row of the simulation grid
(McDonald and Harbaugh, 1988, p. 5-83 through 5-84). Since the MMSP program
computes flow vectors by averaging the discharges through parallel grid-cell
faces, the resultant flow vectors at these locations will often be non-zero.
For example, if flow is simulated into the bottom layer, the MMSP program
will compute a downward vertical component of flow for nodes in the bottom
layer.

The length of the flow vectors may be scaled either arithmetically or
logarithmically. When arithmetic scaling is[selected, the length of each
flow vector is multiplied by a user-specified constant. When logarithmic
scaling is selected, the MMSP program computes the minimum power-of-ten
multiplier needed to increase the minimum non-zero vector length to a value
greater than one. The computation of vector lengths is made by multiplying
all flow-vector lengths by the computed power-of-ten, taking the base-10
logarithm of the product, and multiplying by the absolute value of the
user-specified scaling factor.

The VECT command will compute and write flow vectors for model nodes
that are on the plane defined by the SLIC coijunand. A vector is written for
each node on the slicing plane. For each vector, four records are written
to the output file. The first record is an identification number that is
unique to each node in the model grid. The identification number is
calculated by the following formula.

ID = J + ((1-1) + (K-l) * NROW) * NCOL

where ID = node identification number,
J = node column,
I = node row,
K = node layer,

NROW = number of rows in the simulation, and
NCOL = number of columns in the simulation.

The second record consists of the modeli node location relative to the
origin of the coordinate system, in length uhits. The origin of the
coordinate system used for calculating flow vectors is transformed from the
coordinate system used by the Modular Model, as described previously.

64

TOP VIE

L o y e r s 4

Rows

123456 7

Col urn n s

Oblique slice defined by:

Row Column Layer

1 2 1
6 2 1
6 7 6

Figure 5. Two possible viewing orientations for a sample oblique slice

65

Oblique slice d e f

Row Column L
i n e d by

a y e r

Slice in simulation grid

Rows

Grid cells nearest
the slicing plane

/L

/

/ / / / / / A
/
V

Top viewing orientation shows flow
through right and front cell faces.

Front viewing orientation shows flow
through right and lower cell faces.

Figure 6. Grid cells and vector components used for the calculation
of flow vectors on a sample oblique slice.

66

RESULTANT ORTHOGONAL VECTORS

Averoge of
front foce
flows

Averoge of
right foce
flows

Averoge of
lower foce
flows

Figure 7. Computation of orthogonal vector components for a grid cell

67

The third record consists of the flow vector end-point location
relative to the origin of the coordinate system, in length units. The
length of the vector is proportional to the magnitude of the discharge in
that direction.

The fourth record written for each flow vector is the three characters
"END". After the fourth record of the last flow vector has been written, an
additional "END" record is written.

The flow vector format described herein is compatible with the
requirements for entry into the ARC/INFO geographic information system
(Environmental Systems Research Institute, Inc., 1987a, p. GENERATE 1-10).
A supplementary program, VECTOR.AML, for usijig the flow-vector data with
ARC/INFO is included in attachment C. This format for flow-vector data also
can be used easily with customized graphical display programs.

INPUT INSTRUCTIONS

Field: Command UNIT ORIENTATION SCALE-FACTOR

Beginning column: 169 15

Data Format: VECT 12 A5 F10.0

In order to compute and write flow vectors, include the necessary READ
and SLIC commands in the command file, followed by the VECT command. The
VECT command should specify the Fortran unit number to be used for writing
flow-vector data. The Fortran unit must be opened by the job control
directives used to run the MMSP program.

If the plane defined by the SLIC command
must specify the desired orientation for
orientation are: "TOP", "FRONT", and "SIDE"
illustrated in figure 4. If the plane is
layer of the model grid, the orientation of
by the MMSP program, and need not be specified

is oblique, the VECT command
viewing the plane. The choices for

These orientations are
defined along a column, row, or

the viewing plane is determined

The length of the flow vectors may be scaled arithmetically or
logarithmically. If no scale factor is entered with the VECT command, the
default is to use no scaling (scale factor ejqual to one). If a positive
number is entered for a scaling factor, all vector lengths are multiplied by
that constant. If a negative scaling factor is entered with the VECT
command, the length of the flow vectors computed by the MMSP command will be
proportional to the base-10 logarithms of thje flow magnitudes.

68

SAMPLE INPUT

Input Command File

EXAMPLE OF VECT COMMAND

USED

***:+:£

READ
READ
READ
SLIC
VECT

TO COMPUTE FLOW VECTORS PROJECTED ONTO A PLANE

1
i 0
RIFACE
FRFACE
LOFACE
OOO OOO
56

1
5

001
15OO

2233445566
0505050505
Ol 01
Ol Ol
01 01

LAYER ONE

7
0

SAMPLE OUTPUT

Output Print File

SAMPLE- 3 LAYERS, 15 ROWS, 15 COLUMNS, STEADY STATE, CONSTANT HEADS COLUMN 1, LAYERS 1 AND 2, RECHARGE, WELLS AND DRAINS
EXAMPLE OF VECT COMMAND
USED TO COMPUTE FLOW VECTORS PROJECTED ONTO A PLANE

Processing: VECT 56 1500.

FLOW VECTORS COMPUTED FROM CELL BY CELL FLOW TERMS
ON THE PLANE: 0.000 * Y + 0.000 * X
WRITTEN TO UNIT: 56
VECTOR SCALE FACTOR = 0.150E+04
VECTORS SHOWN IN ARITHMETIC UNITS
HORIZONTAL AXIS REPRESENTS COLUMNS
VERTICAL AXIS REPRESENTS ROWS

THE RIGHT EDGE OF THE GRID IS AT 75000.000
THE FRONT EDGE OF THE GRID IS AT 75000.000
THE BOTTOM EDGE OF THE GRID IS AT 15000.000
MINIMUM VECTOR LENGTH = 0.254
MAXIMUM VECTOR LENGTH = 4.61

NUMBER OF VECTORS WRITTEN = 225
MINIMUM SCALED LENGTH = 381.
MAXIMUM SCALED LENGTH = 0.691E+04

1.00 * Z = 0.250E+04

69

Output Disk File

1
2500.0000 72500.0000
-3543.4893 72500.0000

END
2
7500.0000 72500.0000
1847.9209 72369.5000

END
3
12500.0000 72500.0000
7566.8486 72237.7812

END

......... data for flow vectors 4 through 222 omitted

223
62500.0000 2500.0000
61911.3281 2904.8550

END
224

67500.0000 2500.0000
67051.8594 2950.9443

END
225

72500.0000 2500.0000
72299.9062 2797.9414

END
END

COMMENTS

Fortran unit 56 was opened with job control directives prior to
beginning the MMSP program. Three READ commands and one SLIC command were
performed by the program prior to VECT command. Only the output of the VECT
command is shown here. The processing of thlese data with the supplementary
program, VECTOR.AML, is shown in chapter 4, Displaying Flow Vectors.

70

CHAPTER 4.
SAMPLE APPLICATIONS OF THE PROGRAM

General Comments

In chapters 2 and 3 of this report, numerous potential applications of
the MMSP program are suggested. In chapter 3, example input and output are
presented for each MMSP command. These examples consistently refer to the
sample simulation documented in appendix D of the Modular Model report with
modifications as described at the beginning of chapter 3 of this report.

In this chapter, some other sample simulations are discussed to show how
the MMSP program can be used to investigate ground-water flow modeling
problems. The applications are not an exhaustive listing of the capabilities
of the MMSP program for analyzing ground-water simulations, rather these
examples show some of the problems that can be analyzed, and further
demonstrate how the program can be used.

Checking Data Input to the Model

The Modular Model does not verify, in any substantial way, data that are
input for a simulation. It is the modeler's responsibility to ensure that
the data adequately describe the problem and that the various data elements
are logically consistent. The MMSP program can be used as part of the
verification process. Examples of using the MMSP program to check data input
to the Modular Model follow.

Comparing Starting Head to Land Surface Altitude

Starting heads for the simulation (STRT) are specified in the basic
package of the Modular Model. It may be appropriate to check starting head
values using several different tests. In a water-table aquifer, values of
head are greater than or equal to the altitude of the land surface only at
seeps, springs, streams, and swamps. In a confined aquifer, it is possible
for values of head to exceed the altitude of the land surface at many model
nodes. Therefore, it may be inappropriate to perform this check on a
confined aquifer layer.

To determine where starting heads exceed the altitude of the land
surface, a data array that represents the altitude of the land surface at
model nodes on the top layer must first be read by the MMSP program. If the
values for head are measured from a different datum plane than the values for
altitude, one data array must be adjusted so that both arrays are measured
from the same datum plane. The values of starting head then can be compared
to the land-surface altitude for each layer in the simulation.

The first step in performing this test is to prepare a data array that
represents the land-surface altitude. For this example, there are three

71

layers, ten columns, and ten rows. Layer one is strictly unconfined
(LAYCON(1)=0), and layers two and three are fully convertible between
confined and unconfined (LAYCON(2)=3 and LAYGON(3)=3).

Altitude data in this example have been
and entered into a file using the format needed
array reader, U2DREL. The array control record
is to be read on Fortran unit 41, according to
not to be printed.

41

2113.

2190.

2110.

2183.

2109.

2177.

2105.

2167.

2100.

2157.

2094.

2148.

2103.

2151.

2109.

2159.

2111.
2168.

2114.

2180.

1

2120.

2195.

2112.

2190.

2113.

2186.

2103.

2178.

2100.

2168.

2098.

2157.

2108.

2158.

2114.

2162.

2118.
2175.

2120.

2190.

(8F10.0)

2132. 2135.

2125. 2128.

2121. 2125.

2115. 2122.

2111. 2119.

2105. 2112.

2113. 2120.

2118. 2126.

2124. 2132.

2128. 2137.

-1

2147.

2137.

2133.

2129.

2122.

2117.

2126.

2135.

2140.

2146.

picked from a topographic map
for the two-dimensional real
specifies that the data array

the format '(8F10.0)', and is

LOCAT.CNSTNT.FMTIN.IPRN

2159. 2174. 2188.

2148.

2146.

2134.

2166. 2174.

2156. 2169.

2146. 2158.

2130. 2139. 2149.

2123. 2130. 2139.

2132. 2137. 2145.

2141. 2147. 2154.

2149. 2156. 2163.

2157. 2168. 2179.

For this example, the starting heads wejre measured from a datum plane
2,000 feet above sea level. Therefore, the toATH command is used to adjust
the starting head data array to the same datum plane as the altitude data
array. The following commands would be given to the MMSP program to enter
the land-surface data array, adjust the starting head data array, and compare
the two arrays.

****{
READ
MATH
TITL
COMP

1
S O
LSD 41
STRT
CHECKING
HEAD+D 1

1
5
2
+

IF
>

2
O

R
200O

HEADS
LSD

2 3
5 O
LAND

3
5

COLUMN
INDICATORS

SURFACE
HEAD+D

GREATER THAN
HEAD 1 SEA LEVEL
LAND-SURFACE ALTITUDE

The READ command retrieves the land-surface data from Fortran unit 41,
as a two-dimensional, real array, and provides the textual description "LAND
SURFACE". The MATH command creates a new da^a array by adding 2,000 to every
value for starting head. Since no layer numbers are specified, the new data
array is three-dimensional. The new data array is named HEAD+D, and has the
textual description "HEAD 0 SEA LEVEL". The next command provides a title
for the next page of printed output. Finally, the COMP command compares the
top layer of adjusted starting heads to the land-surface altitude data array.

72

Comparing the Aquifer Top and Bottom Elevations

A similar logical test can be performed with the aquifer top (TOP) and
aquifer bottom (BOT) arrays. To test if the elevation of the top is less
than the aquifer bottom of any confined layer, only one MMSP command is
necessary. The MMSP program will perform this test only where the layer-type
code (LAYCON) is 3, indicating a layer that is fully convertible between
confined and unconfined. Therefore, it is not necessary to identify which
layers should be used for performing the comparison test. The following
commands can be used to perform this test.

**** 112233 COLUMN
****5 050505 INDICATORS
TITL CHECKING IF AQUIFER TOP IS LESS THAN AQUIFER BOTTOM ALTITUDE
COMP TOP < BOT

Comparing Aquifer Top and Bottom to Land Surface Altitude

Similarly, each of the data arrays TOP and BOT may be tested against the
land-surface altitude to determine if any values exceed the land-surface
altitude.

**** 112233 COLUMN
****5 050505 INDICATORS
READ LSD 41 2 R LAND SURFACE
MATH LSD - 200O. 01 LSD-2K LSD - 200O FEET
TITL CHECKING OF AQUIFER TOP GREATER THAN LAND-SURFACE ALTITUDE
COMP TOP 1 > LSD-2K
COMP TOP 2 > LSD-2K
COMP TOP 3 > LSD-2K
TITL CHECKING IF AQUIFER BOTTOM GREATER THAN LAND-SURFACE ALTITUDE
COMP BOT 1 > LSD-2K
COMP BOT 2 > LSD-2K
COMP BOT 3 > LSD-2K

As before, the land-surface altitude data are read from Fortran unit 41
and given a data-set name of LSD. In this example, the LSD data array is
adjusted to a datum plane 2,000 feet above sea level by subtracting 2,000
from each element. The new data array is named LSD-2K. A layer number is
needed for the data array because a three-dimensional array is prepared when
the data-set name is a number. The LSD data array is two-dimensional, and
when a two-dimensional data array is used with a three-dimensional data array
in a COMP or MATH command, a layer number should be supplied with the
three-dimensional data-set name.

For each of the three layers, the elevation of the layer top and bottom
is compared to the LSD-2K data. Six COMP commands are used because the
LSD-2K data array is two-dimensional. When TOP or BOT is unavailable for any
layer, (the layer-type array LAYCON indicates that these data are not
present), then the corresponding MMSP COMP command causes an error message to
be printed, the comparison is not performed, and the MMSP program processes
the next command. In this example, layer 1 is unconfined (LAYCON(1)=1),
therefore the first COMP command produces an error message because there is
no TOP data array for layer 1.

73

Finding Pumpage or Recharge at Inactive and Constant Head Nodes

The Modular Model will allow a modeler to specify recharge or pumpage
data for inactive or constant-head nodes. However, the results of the
simulation will not be affected by recharge or pumpage at these locations.
Therefore, such specifications may be an error in the data that are input to
the Modular Model. It is simple is check for these conditions using the MMSP
program. A modeler can determine at which model nodes these conditions
occur, and compute the recharge flux applied to nodes where the water does
not enter the simulation. [

**** 11223 COLUMN
****5 05050 INDICATORS
TITL LISTING OF INACTIVE OR CONSTANT HEAd NODES RECEIVING RECHARGE
COMP RECH > 0.0 -1
TITL LISTING OF INACTIVE OR CONSTANT HEAD NODES WITH PUMPAGE
COMP WELL > 0.0 -1
TITL RECHARGE FLUX APPLIED TO INACTIVE AND CONSTANT HEAD NODES
STAT RECHF -1

In this example, a listing of nodes is written where recharge and
pumpage are applied to inactive and constant-head nodes. The last command
prepares a statistical summary of recharge flux at inactive and constant head
nodes. The recharge flux (volume/time) applied to inactive and constant-head
nodes is printed in the statistical summary under the heading SUM OF VALUES.
All of these commands use a model-boundary mask to restrict the analyses to
inactive and constant-head nodes.

Checking the Range of the Storage Coefficient Values

The storage coefficient of an aquifer i« the volume of water released
from a unit area of the aquifer by a unit chinge in head. The storage
coefficient for a transient simulation of a confined aquifer is specified for
the Modular Model in the input to the block-centered flow package.
Typically, values for the storage coefficient of a confined aquifer are in
the range between 0.00005 and .005 (Todd, 1964, p. 13-4).

In an unconfined aquifer, the storage coefficient is equal to the
specific yield, which is the volume of water yielded from an saturated medium
by gravity divided by the total volume of the medium. Specific yield of an
unconfined aquifer is normally significantly greater than the storage
coefficient of a confined aquifer, and can be as large as 0.35 (Johnson,
1967, p. D70). The MMSP program can be used to verify that the values
specified for the storage coefficient and specific yield arrays in an
isotropic, homogeneous aquifer are within a reasonable range.

**** 1122 , COLUMN
****5 0 5 O 5 INDICATORS
TITL CHECKING SPECIFIC YIELD, LAYER ONE IS UNCONFINED
COMP SCI 1 > O.35 1
TITL CHECKING STORAGE COEFFICIENT, LAYERS 2-3 ARE CONFINED
COMP SCI 2 > 0.005 2
COMP SCI 3 > 0.005 3
COMP SCI 2 < 0.5E-4 2
COMP SCI 3 < 0.5E-4 3

74

Analyzing the Results of Simulations

The MMSP program is especially useful for analyzing the results of
ground-water simulations made using the Modular Model. In the past, many
ground-water modelers have written computer programs to assist in the
interpretation of a particular simulation. The MMSP program is a
general-purpose computer program that eliminates the need for many of these
programs. Furthermore, the MMSP program provides the capabilities for
detailed analyses of ground-water simulations that previously were difficult
to accomplish.

Summarizing Drawdown

The Modular Model computes and stores drawdown by subtracting heads at
any specified time step from starting heads. The MMSP program can compute
the drawdown between any pair of time steps when heads were saved.
Therefore, when using the MMSP program, it is unnecessary to have the Modular
Model compute and save drawdowns.

Commonly, a ground-water model is used to simulate the effects of
various ground-water management strategies for an aquifer system. By
computing the drawdown from the start of the simulation to the final time
step, analysis of the effects of a given strategy on head in the aquifer is
easy.

In the following example applications of the MMSP program, a transient
simulation that consists of three stress periods and five time-steps in each
stress period is analyzed. There are 15 columns, 15 rows, and 3 layers in
the model grid. At the second stress period, a new field well is placed into
operation in the vicinity of another well field. Heads and cell-by-cell flow
terms are written to a file at the end of each time step.

To summarize the results of the simulation, a statistical analysis is
prepared for the drawdown during the simulation period. Computed heads are
read for the final time step of the third stress period from the unformatted
file written by the Modular Model. A data array of drawdown is computed by
subtracting the computed heads from the starting heads. The new data array
is three-dimensional, and is named "CHANGE". Summary statistics and a
frequency analysis for active model nodes are written to the print file.

**** 1 1
****5 O 5
READ HEAD
MATH STRT
TITL STATISTICAL
STAT CHANGE
HIST CHANGE

2 2
0 5
3 5

- HEAD
SUMMARY OF
1
1

3 COLUMN
0 INDICATORS

CHANGE CHANGE IN HEAD
DRAWDOWN AT ACTIVE NODES

75

Summarizing Drawdown Within a Specific Area

The modeler wants to evaluate the effects that a new well field will
have on water levels in the vicinity of an existing well field. The existing
well field is within rows 4 through 13, columns 6 through 14, in layer 2 of
the model grid. To accomplish this task, a user-boundary array is prepared
and entered into a file using the format for the two-dimensional integer
array reader, U2DINT. The first and third array control records identify all
nodes in layers 1 and 3 as outside the user boundary, and suppresses printing
of these data. The second array control record specifies that the data array
is to be read on Fortran unit 56, according to the format '(1513)', and is
not to be printed.

-1 -1
-1 -1
-1 -1
-1 -1
-1 -1
-1 -1
-1 -1
-1 -1
-1 -1
-1 -1
-1 -1
-1 -1
-1 -1
-1 -1
-1 -1

0
56

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1
-1

0

-1 -1

-1 -1

-1 -1

-1 -1

-1 -1

-1 -1
-1 -1

-1 -1

-1 -1

-1 -1

-1 -1

-1 -1

-1 -1

-1 -1

-1 -1

-1

-1

-1

1

1

1

1

1

1

1

1

1

1
-1
-1

-1(1513)

1(1513)
-1 -1 -1

-1

-1

1

1

1

1

1

1

1

1

1

1
-1
-1

-1

-1

1

1

1

1

1

1

1

1

1

1
-1

-1

-1

-1

1

1

1

1

1

1

1

1

1

1
-1
-1

-1

-1

-1

1

1

1

1

1

1
1

1

1

1
-1

-1

-1

-1

-1

1

1
1

1

1

1

1

1

1

1
-1
-1

-1

-1

-1

1

1

1

1

1

1

1

1

1

1
-1

-1

-1 -1 -1

-1 -1 -1

-1 -1 -1

1 1 -1
1 1 -1

1 1 -1

1 1 -1

1 1 -1

1 1 -1
1

1

1

1
-1 -

-1 -

1 -1

1 -1

1 -1

1 -1

1 -1

1 -1

-1(1513)

-3

-3
UBOUND-1

UBOUND-2

-3 UBOUND-1

As in the previous example, a statistical analysis is prepared for
drawdown during the simulation period. Computed heads are read for the final
time step of the third stress period, and a data array of drawdown is
prepared by subtracting the computed heads from the starting heads. The
user-boundary array is read by the program and used to limit the data
included in the summary statistics and the frequency analysis.

CHANGE CHANGE IN HEAD

COLUMN
INDICATORS

**** 1122
****5 0505
READ HEAD 3 5
MATH STRT - HEAD
READ UBOUND 56 3 I
TITL SUMMARY OF DRAWDOWN AT ACTIVE NODES IN EXISTING WELL FIELD
STAT CHANGE 1 1
HIST CHANGE 1 1

Both of the previous example analyses could have been accomplished in a
single execution of the MMSP program. To combine both analyses, the TITL,
STAT, and HIST commands from the prior example could be inserted after the
MATH command in the second example.

76

Comparing the Results of Several Simulations

Suppose the ground-water modeler also must compare the effects of
several pumpage rates (50, 100, and 150 cubic feet per second). To perform
this task, the modeler must make three simulations of the ground-water
system, setting the pumpage rates specified for the Modular Model in the well
package before each simulation. After the simulation of each of the first
two pumpage rates, the MMSP program is used as described in the previous
example. However, an additional command is added to the command file to
write the final computed heads to a file, so that the data array can be used
as an auxiliary data array in a later execution of the MMSP program. After
simulation of pumpage of 50 cubic feet per second, the command file would
contain the following commands.

**** 1
****5 O
READ HEAD
MATH STRT

1
5

2
O
3

- HEAD

2
5
5

3
O

CHANGE CHANGE IN HEAD

COLUMN
INDICATORS

READ UBOUND 56 3 I
TITL DRAWDOWN AT ACTIVE NODES IN EXISTING WELL FIELD: 5O CFS
STAT CHANGE 1 1
HIST CHANGE 1 1
TITL COMPUTED HEADS FOR 5O CFS PUMPAGE
WRIT HEAD 31 O

The last command causes the MMSP program to write a formatted file of
computed heads on Fortran unit 31, using the print-format code zero (Fortran
format '(10G11.4)', refer to table 9). Similarly, for the simulation of
pumpage of 100 cubic feet per second, the corresponding command file would
contain the following commands.

**** 1
****5 O
READ HEAD
MATH STRT

1
5

2
O
3

- HEAD

2
5
5

3
O

CHANGE CHANGE IN HEAD

COLUMN
INDICATORS

READ UBOUND 56 3 I
TITL DRAWDOWN AT ACTIVE NODES IN EXISTING WELL FIELD: 1OO CFS
STAT CHANGE 1 1
HIST CHANGE 1 1
TITL COMPUTED HEADS FOR 1OO CFS PUMPAGE
WRIT HEAD 32 O

After simulating pumpage of 150 cubic feet per second, the results of
all three simulations can be read and manipulated. The following example
command file causes the same analysis of computed heads as previously
demonstrated. In addition, the computed heads from the simulations of other
pumpage rates are accessed with the READ command, placed on the three-dimen
sional stack, and given the data-set names: WL50 and WL100. The subsequent
MATH command is given in order to move the HEAD data array to the bottom of
the stack, so that it is not lost after the following MATH commands. These
MATH commands compute the differences between computed heads for each of the
pumpage rates. The difference data arrays are named CHG1-2, CHG1-3, and
CHG2-3. Statistical summaries are then printed for each of the three arrays
for all active nodes, as well as active nodes within the existing well field

77

3|o|o|o|c£

TITL
READ
MATH
READ
TITL
STAT
HIST
TITL
STAT
HIST

READ
READ

1
i 0

Ana 1 y z i n
SUMMARY
HEAD
STRT
UBOUND

9
0

56
DRAWDOWN,
CHANGE
CHANGE
DRAWDOWN ,
CHANGE
CHANGE

Read i n
These
WL50
WL100

1 2
5 0

the s i mu

2
5

3
0

1 at i on of p
F DRAWDOWN

3
- HEAD

3 I
150-CFS

1
1

150-CFS
1 1
1 1

g head data

5
AT ACTIVE

umpage
NODES

at ISO

COLUMN
INDICATORS

cf s
IN EXISTING WELL FIELD

CHANGE DRAWDOWN: 150 CFS

PUMPAGE AT

PUMPAGE AT

from

ACTIVE

ACTIVE

NODES

NODES,

the simulations us i

EXISTING WELL FIELD

ng other pumpages
aata were saved using the WRIT command in previous runs
31
32

**** Computi ng
:*:>ioiot: 3-D stacR
MATH
MATH
MATH
MATH
**#*
***#
TITL
STAT
STAT
TITL
STAT
STAT
TITL
STAT
STAT

HEAD
WL50
WL50
WL100

Prepa r i ng
HEAD DIFF
CHG1-2
CHG1-2

3 R
3 R

WATER LEVEL: 5O CFS
WATER LEVEL: 10O CFS

the head-d
: HEAD ,

+ 0.0
- WL100
- HEAD
- HEAD

stat i st i

i fference arrays between pumpage scenarios
CHANGE. WL50. WL1OO

cs

HEAD
CHG1-2
CHG1-3
CHG2-3

for the
ERENCE BETWEEN

1
1 1

HEAD DIFFERENCE BETWEEN
CHG1-3
CHG1-3

1
1 1

HEAD DIFFERENCE BETWEEN
CHG2-3
CHG2-3

1
1 1

150 Cf*S SURFACE
50-100 CFS
5O-1SO CFS
100-lSO CFS

head-d i

SURFACE
SURFACE
SURFACE

fference arrays
PUMPAGE AT 50 AND

PUMPAGE AT 50 AND

PUMPAGE AT] 00 AND

100 CFS

150 CFS

150 CFS

Computing Change of Volume of Water in Storage

Another common task performed by modelers after performing a transient
simulation of a ground-water system is to compute the volume of water in
storage. In a water-table aquifer, the volume of water in storage is
computed by multiplying the saturated thickness by the specific yield and the
area of the aquifer. For a block-centered finite-difference grid the volume
of water stored in a unconfined layer is computed by the following formula.

DELR. DELC. S.
' J

HEAD. . - BO"

where i = column number,
j = row number, i

DELR = width of ceI Is along columns,
DELC = width of ceI Is along rows,

S =specificyield, (
HEAD = elevation of the water jsurface in an unconfined

unit, and
BOT = elevation of the bottom of an unconfined unit.

78

The volume of water stored in a Modular Model simulation where the first
layer of the grid is unconfined could be computed by the MMSP program using
the following commands.

TITL COMPUTING VOLUME OF WATER IN STORAGE IN LAYER 1, SP 3, TS 5
REBO 3 5
READ HEAD 3 5
MATH HEAD Ol - BOT Ol SATHIK SATURATED THICKNESS
MATH SATHIK * AREA Ol VOLUME VOLUME LAYER 1
MATH VOLUME * SCI Ol STORE1 STORAGE LAYER 1
STAT STORE1 OOO20O

The REBO command is given to update the model-boundary array (IBOUND) by
inactivating any model nodes that may have gone dry during the simulation.
Head for the fifth time step of stress period three is read onto the
three-dimensional stack. Saturated thickness is computed using the MATH
command to subtract the bottom elevation from the head in layer one. The
resultant data array is named SATHIK and is placed on the two-dimensional
stack. The volume of the saturated zone is computed by the next MATH
command, by multiplying saturated thickness by the area of cells, and placing
the results on the two-dimensional stack. The third MATH command computes
the volume of water in storage in the layer, by multiplying the volume of the
saturated zone with the primary storage factor.

Finally, a STAT command is used to calculate descriptive statistics for
the volume of water in storage. The mask field of the STAT command restricts
the computation to active and constant head nodes. It is essential to mask
the inactive nodes, because the Modular Model sets the head at all
inactivated nodes to 10 so .

If the saturated thickness or the area of cells is large, it may be
desirable to scale the volume data array by using the MATH command to divide
by some convenient power of 10. The STAT command may cause the MMSP program
to fail to compute geometric and harmonic means if the size of a data value
exceeds the limit that can be stored. This size limitation is determined by
the scheme used to represent floating point data on a computer system, and
this information is made available to the MMSP program in the inserted code
block named TINY.INS (attachment A).

Computing the Effects of Well Pumpage on Stream Discharge

Cell-by-cell flow terms from the Modular Model can be analyzed to answer
questions about the results of a simulation. For example, suppose an inter
mittent stream were included in the simulation of the previous problem, where
the modeler is analyzing the potential effects of a new well field. The
stream makes a minimal, if any, contribution to the ground-water system,
therefore it is simulated using the drain package of the Modular Model. The
question to be answered is: "What decrease in contribution of ground water
to stream discharge will occur if the proposed well field is constructed?"

79

The first step in solving this problem is to perform a steady-state
simulation of conditions prior to the development of the well field. The
result is used to determine the base flow of the stream caused by contribu
tion from the ground-water system. To use these data in a later analysis by
the MMSP program, the data array of cell-by-cell flow terms from the drain
package is read and reformatted, as was done
the effects of different pumpage rates on computed head were compared.

in the example application where

TITL SAVING CBC FLOW TERMS FROM THE DRAIN
READ CBCDRN 1 1
WRIT CBCDRN 33

PACKAGE FOR LATER USE

Next, a transient simulation is performed, and the MMSP program is used
to analyze the different contributions to strjeamflow between the two simula
tions .

TITL STREAMFLOW CONTRIBUTION AT STRESS PERIOD 3, TIME STEP 5
READ CBCDRN 3 5
READ DRNSS 33 3 R CBCDRN FOR STEADY-STATE
MATH CBCDRN - DRNSS DIFF CHANGE IN BASE-FLOW
STAT DRNSS O1OOOO
STAT CBCDRN O1OOOO
STAT DIFF 01OOOO

The first READ command reads the cell-by-cell flow terms from the drain
package created during the transient simulation, and puts the data array on
the three-dimensional stack. The second READ command reads, from the
steady-state simulation, the cell-by-cell flow terms that were written by the
MMSP program after the first model run. The MATH command places a new data
array named DIFF on the three-dimensional stack, by subtracting one
cell-by-cell flow term data array from the other.

Because flow from a cell is computed as a negative value by the Modular
Model, a negative value in the DIFF data array indicates a decrease in
streamflow contribution at the corresponding node in the model. Three STAT
commands are used to summarize the two cell-by-cell flow-term data arrays and
the difference data array. A zero mask is ujsed to exclude nodes where there
is no flow from the aquifer to the stream, '..f any model nodes stopped
contributing to streamflow during the transient simulation, an increase in
the number of values excluded from the STAT command analysis by the zero mask
will be seen.

Graphing the Results of}Simulations

The MMSP program does not produce graphical displays. However, the MMSP
HEAD and VECT commands produce data files that can be used easily with
graphical display programs.

80

Graphing Computed and Observed Heads

Commonly, hydrographs are prepared to show changes in water level with
time. The HEAD command can be used to extract simulated values of water
level for selected model nodes and write the values to a formatted file.
This file may be used subsequently with a graphical display program to
produce hydrographs.

For this example, consider a transient simulation with 16 stress
periods, each with a 1-day duration. There is one time step for each stress
period, and heads are saved for stress periods: 1, 2, 4, 8, and 16. Time in
the simulation is measured in seconds. For the period covering the
simulation, water levels at an observation well were measured daily in the
field. The location of the observation well corresponds to the node in the
simulation grid at row 17, column 17, and layer 10.

After completion of the Modular Model transient simulation, the
following command is used with the MMSP program.

HEAD 44 17 17 10

This command caused computed head values for the node corresponding to
the observation well to be written to a file open on Fortran unit 44. Job
control directives have opened a file named HEADOUT on Fortran unit 44. The
file of computed heads is shown below.

17 17 10 1 1 86400. 86400. 98.233842
17 17 10 2 1 86400. 172800. 90.144520
17 17 10 3 1 -0.123456E+20 -0.123456E+20 -0.123456E+20
17 17 10 4 1 86400. 345600. 85.145238
17 17 10 5 1 -0.123456E+20 -0.123456E+20 -0.123456E+20
17 17 10 6 1 -0.123456E+20 -0.123456E+20 -0.123456E+20
17 17 10 7 1 -0.123456E+20 -0.123456E+20 -0.123456E+20
17 17 10 8 1 86400. 691200. 82.732234
17 17 10 9 1 -0.123456E+20 -0.123456E+20 -0.123456E+20
17 17 10 10 1 -0.123456E+20 -0.123456E+20 -0.123456E+20
17 17 10 11 1 -0.123456E+20 -0.123456E+20 -0.123456E+20
17 17 10 12 1 -0.123456E+20 -0.123456E+20 -0.123456E+20
17 17 10 13 1 -0.123456E+20 -0.123456E+20 -0.123456E+20
17 17 10 14 1 -0.123456E+20 -0.123456E+20 -0.123456E+20
17 17 10 15 1 -0.123456E+20 -0.123456E+20 -0.123456E+20
17 17 10 16 1 86400. 1382400. 79.852342

The HEAD command produced 16 records in the file, one for each time step
in the simulation. Each record contains the row, column, and layer of the
model node; the stress period and time step number; the elapsed time since
the beginning of the stress period and since the beginning of the simulation;
and the computed head. The Fortran format for each record is:
'(515,3015.6)'. When heads were not saved for a time step, the elapsed time
and computed head fields contain the first missing-value indicator.

81

The observed water level data have been written to a formatted file that
is shown below. The name of this file is GW.SUBF.

35430209610210119820311 3.74

35430209610210119820312 11.57

35430209610210119820313 14.50

35430209610210119820314 15.15

35430209610210119820315 15.22

35430209610210119820316 15.31

35430209610210119820317 15.38

35430209610210119820318 15.48

35430209610210119820319 15.59

35430209610210119820320 15.71

35430209610210119820321 15.80
35430209610210119820322 15.89

35430209610210119820323 16.11

35430209610210119820324 16.41

35430209610210119820325 16.88

35430209610210119820326 16.97

The first 15 columns of data on each record are a site identification
number. The next 8 columns are the calender \ date that the water level was
measured. The remaining columns are the dep:h to the water surface measured
from the land surface, in feet.

The data elements of the computed and observed water levels are not
expressed in equivalent units. (1) The location of the head data from the
Modular Model are expressed in coordinates of the simulation grid cells. The
location of the observed water-level data is given by the siteidentification
number. (2) The elapsed-time data from the Modular Model are in seconds
since the beginning of the simulation. The times of the observed water
levels are given as calendar dates. (3) The computed head data from the
Modular Model represent the water level above a datum plane 100 feet below
the land-surface datum. The observed water-level data are measured as the
distance below the land-surface datum.

A computer program may be used to adjust these data elements and produce
a hydrograph. For a quick analysis of observed and computed heads, use of a
statistical package that has some data manipulation and graphical display
capabilities is an alternative. One such statistical package is P-STAT
(Buhler, 1986). A variety of statistical and graphical display packages may
be used, and several different approaches to solving the problem may be used
with each package. Shown below is an example of one approach using the
P-STAT package.

82

BUILD CH, FIXED. FILE HEADOUT:
VARS ROW 1-5

COL 6-10
TOTIM 41-55 (Ml ' -O . 123456E+2O ')
CLEVEL 56-70 (Ml ' -O . 123456E+2O ') $

MODIFY CH (IF ROW = 17 AND COL = 17, GENERATE SITEID : C15 = '3543O2O961O21O1 ')
(GENERATE DAY = TOTIM / 864OO) (KEEP DAY, CLEVEL, SITEID) . OUT MCHS

PURGE CHS
BUILD OH, FIXED. FILE GW.SUBF:

VARS SITEID :C15
DAY 22-23
DEPTH 24-30 $

MODIFY OH (SET DAY = DAY - 1O) (GENERATE OLEVEL = 1OO - DEPTH)
(KEEP DAY, OLEVEL, SITEID), OUT MOHS

PURGE OH$
JOIN MCH MOH. OUT BH, FILL, NO CHECKS
PLOT BH, BY SITEID:

PLOT CLEVEL * DAY:
OVERLAY OLEVEL * DAYS

Explanation of the details of P-STAT commands is not feasible in this
report. For an in-depth analysis of this example, readers should consult the
P-STAT User's Manual (Buhler, 1986). The following discussion presents an
overview of the P-STAT commands used in this example. Each P-STAT command is
free-format, and continues for one or more lines. The end of each command is
identified by a dollar-sign ($) .

The first command, BUILD, reads the data from the file created by the
HEAD command into a P-STAT data set named CH. The next command, MODIFY,
creates a new data set named MCH from CH, by adding the variables for day
number (DAY) , and site-identification number (SITEID) . The CH data set is
then discarded using the PURGE command.

Next, the observed water-level data are read into a P-STAT data set
named OH using another BUILD command. The OH data are altered with another
MODIFY command to create a new P-STAT data set, named MOH, with the new
variable OLEVEL for water level measured from the same datum plane as the
computed head data (CLEVEL) , and the recomputed variable DAY for day number .
The PURGE command is used to discard the OH data set. The two modified data
sets, MCH and MOH, are merged using the JOIN command to create the data set
BH. The merged data set BH contains the variables SITEID, DAY, OLEVEL, and
CLEVEL. Finally the plot command is used to produce the following
line-printer plots.
BY: SITEID = 3543O2O961O21O1

Plot of CLEVEL by DAY (Legend: *=1 , 2=2, ..., $=1O+)

1OO +
I*

95 +
C I
L 9O + *
E I
V 85 + *
E | *
L 80 + *

75 +

70 +

1 2 3 4 5 6 7 8 9 1O 11 12 13 14 15 16
DAY

83

BY: SITEID = 354302096102101

Plot of CLEVEL by DAY (Legend: *=1, 2=2, ..., $=10+)
Overlay OLEVEL by DAY (Legend: A =1 or more)

100

95

90

85

80

75

70

+
1*
+

1
+ *

1 A
+ A * A A A A A

1 *

1
+

1
+

+ + 4. + + + + + +
123456789

DAY

A A A A
A A

10 11 12 13 14 15 16

As an additional benefit, a statistical package may be used to analyze
simulated data using correlation and regression analysis. Continuing the
previous example, the following P-STAT commands perform some exploratory
analysis of the observed and computed heads.

CORRELATE BH (KEEP OLEVEL CLEVEL), OUT CORR . BH$
LIST CORR.BHS
REGRESSION BH (KEEP OLEVEL CLEVEL) ;

SUMMARY. OUT REGR.BH,
INDEPENDENT OLEVEL,
DEPENDENT CLEVELS

PLOT REGR.BH;
PLOT CLEVEL * OLEVEL;
PLOT PRE. CLEVEL * CLEVEL:
PLOT RES. CLEVEL * CLEVELS

These commands provide a cursory examination of the relation between the
observed and simulated heads. A complete analysis is beyond the scope of
this report. This example shows some of the capabilities provided by using
the MMSP program to write computed head data to a file and use these data in
a statistical package.

The CORRELATE command prepares a correlation matrix between observed and
computed heads. The REGRESSION command computes a simple linear regression
equation for predicting computed head from observed head. The REGRESSION
command creates a new P-STAT data set named REGR.BH that contains the
original variables CLEVEL and OLEVEL, as well as heads computed from the
regression equation PRE. CLEVEL and the residuals RES. CLEVEL (RES. CLEVEL =
CLEVEL - PRE . CLEVEL) . The results of appending these example P-STAT commands
to the previous P-STAT commands follow.

84

Correlate completed.
16 cases were read.
5 is the smaI lest good N for any pair of variables
The variables are OLEVEL and CLEVEL .

OLEVEL CLEVEL
row
label

l.OOOOOO O.981631 OLEVEL
0.981631 1.000000 CLEVEL

11 cases were dropped because of missing data.

AlI variables are now in.

File i s BH.

Final summary of Regression on dependent variable CLEVEL:

Mu Iti pIe R
Multiple R squared
Adjusted R squared
Std. Error of Est.
Constant

0.9816
0.9636
0.9515
1.5909

-29.1327

Ana Iys i s of
Va r i a nee

Regress i on
Res i duaI

Adj . TotaI

DF
1
3

Sum of
Squa res
200.992

7.593

208.585

Mean
Squa re
2O0.992

2.531

F
Rat i o

79.414

Prob.
Leve I
0.003

S Num
T vars
E now
P i n

Mult Mult Change
R R i n RSq

Sq.

0.982 0.964 0.964

Var i abIe
entered

(* shows
aeIeted)

OLEVEL

B,
raw

coef-
f i c i ent

1.3310

Stand
error

of
B

0. 1494

Va r i abIe
entered

(* shows
aeIeted)

OLEVEL

BETA,
Stand.
coef-

f i c i ent

0.9816

Final
F

to
deIete

79.414

F when
entered

or
deIeted

79.414

S i mpIe
cor .
w i th
dep .

0.9816

Parti a I
cor. i n

final
step

0.9816

Regression Equation:

CLEVEL (pred) = 1.33101 OLEVEL + -29.1327

File REGR.BH has 16 rows and 4 variables.

85

Plot of CLEVEL by OLEVEL (Legend: *=1, 2=2, ..., $=10+)

100 +
I *

95 +

90 + * |

85 + *
I *

80 + *
I

75 +

7O +

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
OLEVEL

Plot of Pre.CLEVEL by CLEVEL (Legend: *=1, 2=2, . .., $=10+)

100 +

95 +

90 +

85 +

80 +

70 75 80 85
CLEVIEL

90 95 100

Plot of Res. CLEVEL by CLEVEL (Legend: *=1 , 2=2, ..., $=10+)

2 H

R
e 1 H:
L 0 H

i
L -1 ,

-2 -

-

*
-

*

*

*

*

-

70 75 80 8
CLEV

5 90 95 1
EL

86

Displaying Flow Vectors

The MMSP YECT command writes data that can be used easily with the
ARC/INFO geographic information system (CIS). In this CIS, spatial data for
points, lines, and polygons are grouped into logical sets referred to as
"coverages". The VECT command produces a data file that is easily used to
create a "line coverage", which can be displayed and analyzed with other
coverages such as rivers, wells, or water-level contours.

The data produced by the VECT command can be used by a custom
user-supplied program. Information about the contents and formatting of the
data is given in chapter 3. In attachment C, VECTOR.MIL and ARCNUM.F77,
programs for creating an ARC/INFO line coverage from the output of the VECT
command, are presented. VECTOR is an ARC/INFO Macro-Language (AMD program
that runs ARCNUM, a Fortran 77 program.

The AMI program should be run from within the ARC/INFO software package.
After invoking ARC/INFO, the AML program is run by typing the following
command:

ftRUN VECTOR VECT_FILE COVERJIAME NROW NCOL

where YECT_FILE = name of the file created by the MMSP VECT command,
COVER_NAME = name of the new coverage to be created,

NROW = number of rows in the model simulation grid, and
NCOL = number of columns in the model simulation grid.

The VECTOR program will first perform some tests on the data that are
supplied on the command line. These tests include checking that all four
variables were entered, checking if the YECT_FILE exists, and checking that
the COVERJtAUE does not exist. If any of these tests fail, the VECTOR
program prints a message, and stops. Otherwise, the program creates a new
line coverage and adds three new variables to the coverage. These variables
are referred to as "items" or "attributes" in ARC/INFO terminology. The
three new variables are used for identifying the row, column, and layer of
each flow vector. Finally, a Fortran program, ARCNUM, is run to define the
row, column, and layer coordinates for each vector using the vector identifi
cation number that was written by the MMSP VECT command.

To install the VECTOR package on a computer system, the VECTOR.AML
program may need to be modified to correctly identify how the ARCNUM program
can be run. The line of the VECTOR.AML program shown below determines the
method for running the program, and the location of the ARCNUM program on the
computer system.

JtS OS.COMMAND : = RESUME ARCNUM.RUN

This line may need to be modified for each computer system. As shown, the
OS.COMMAND AML variable is set to run a executable load module on a Prime
computer system (RESUME) that is named ARCNUM.RUN in the current disk-storage
area. When the ARCNUM program is compiled and linked, the linking process
must include a reference to the ARC/INFO binary object code.

87

To illustrate the use of the VECT command and the VECTOR package, the
modified sample simulation from appendix D of the Modular Model report was
used (McDonald and Harbaugh, 1988). The example input for the VECT command
in chapter 3 shows the commands needed to write flow-vector data to Fortran
unit 56, for nodes on layer one of the model simulation grid. For this
example, a disk file named VECT.OUT was opened on Fortran unit 56 by job
control directives prior to running the MMSP program. After running the MMSP
program to produce the flow-vector data, the VECTOR program was run from
within ARC/INFO with the following command to create a new ARC/INFO coverage
named LAYER1.

ARUN VECTOR VECT.OUT LAYER! 15 15

When the VECTOR program runs, it produces the following output.

[VECTOR Revision 1.O]

(C) 1987 Environmental Systems Research Institute, Inc.
All Rights Reserved Worldwide

[GENERATE Version 4.O (24 June 1987)]

Creating Lines with coordinates loaded from VECT.OUT

External I ing BND and TIC. . .

Bu i Id i ng I i nes. . .
Creating attribute file for LAYER1
Adding ROW to LAYER1.AAT to produce LAYER1.AAT.
Adding COLUMN to LAYER1.AAT to produce LAYERl.AAT.
Adding LAYER to LAYERl.AAT to produce LAYERl.AAT.
Submitting command RESUME ARCNUM.RUN
MOD>RBD>INFO
LAYER1
15
15
Number of nodes defined = 225
**** STOP

The creation of a flow-vector coverage is complete. The lines in the
coverage represent the direction and the scaled magnitude of the discharge at
each node. Each flow vector is identified by three attributes for the ROW,
COLUMN, and LAYER number of its location in the simulation grid. However,
the spatial locations of the nodes in the coverage are represented in the
units of the simulation (for example: feet), with the origin of coordinates
in the lower-left corner of the plane that slices the simulation grid.

It is possible to use the ARC/INFO ARCPLOT (Environmental Systems
Research Institute, Inc., 1987b) sub-system to display the flow vectors.
This is performed easily using the ARCS and the ARCARROWS commands of the
ARCPLOT sub-system. To display the flow vector coverage created in this
example, the graphical display device should be defined using the ARCPLOT
DISPLAY command, then the following commands should be given to produce the
flow vectors shown in figure 8.

MAPEXTENT LAYER1
ARCS LAYER1
ARCARROWS LAYER1

88

< I

< 1

 «-
«-

<:

.

<

<

<-

<-

<r-

<-

^ ̂ ^ ^ ^

<- *-' ^- ^x *-" ^ ^

^ "* ' ^^" <^ ^ <^ iS i/

~^ *S ^ / ,/ ^ / /

~^ / / / / / / /

: _ ^ \ \\c^^ ^
^^^^x ^^^--
<-^^-v^ - - -
__<-_ ^ ^ -. V , V ,

___ ^ ____ ^^-_ ^-^ *^ *v \ \ \

«_ *-. - , \ \1 < < *-*---

< < < < «_ ^ N V

I

/ / / / /

////>/

/ / / / /

/ ^ */ / /

/ / ^ / /

/ / / / /

/ / / / /

^ / / / /

f iS S S /

-

\\Nvv

\ \ \ \ \

*, V V N V

1

I

I
I
i
I
i
i
r

'

4

N

N

\

Figure 8. Sample flow vectors computed by the modular model statistical
processor.

89

Flow-vector coverages that are derived from a horizontal slice for a
specific layer of the simulation grid can be displayed along with other
coverages. However, until the coordinate system of the flow-vector coverage
is transformed to a system equivalent to the one used with other ancillary
coverages, the coverages cannot be shown on the same display.

The ARC/ INFO GIS maintains a set of registration points that are used to
transform a coverage from one coordinate system to another. These
registration points are referred to as "tics 11 . To create a coverage of flow
vectors that can be displayed with other geographic data, the values for the
tics must be set to known coordinates in the simulation grid, using the same
units that were used in the Modular Model simulation. These same tics also
must be identified in the coordinate system used for the registration of the
ancillary geographic data. Finally, all of the coordinates in the
flow-vector coverage from the VECTOR program are converted to equivalent
coordinates using a relation defined by the coordinates of the tics in the
two references frames.

The simplest points to use for tics in the flow vector coverage are the
four corners of the simulation grid. The first step in transforming the
flow-vector coverage is to determine the areal extent of the simulation grid.
The total horizontal distance along a row is the sum of the cell widths along
rows (DELR) . Similarly, the total horizontal distance along a column is the
sum of the cell widths along columns (DELC) . In this example, the total
distance in both dimensions is 75,000 (15 x fe,000) since the simulation grid
is square. The sums of the cell widths are printed in the output of the VECT
command.

Initially, after running the VECTOR program, the four tics will be
defined with their coordinates set equal to the minimum and maximum values of
coordinates for any of the flow vectors (fig. 9). Since flow vectors may
extent beyond the simulation grid (flow toward the edge of the modeled area) ,
these values for registration points are of little utility. However, the
values for the tics are easily modified using the INFO sub-system of the
ARC/INFO GIS. A example session showing how to reset tics to the areal
limits of the simulation follows.

ENTER COMMAND >SELECT LAYjERl.TIC
4 RECORD (S) SELECTED

ENTER COMMAND >UPDATE
RECNO?>1

1
IDTIC = 1
XTIC = 72,5OO.OOO
YTIC = 2,50O
?>XTIC = 75000.
?>YTIC = 0.

.OOO

RECNO?>2
2

IDTIC = 4
XTIC = 72,5OO.OOO
YTIC = 72,500.000
?>IDTIC = 2
?>XTIC = 75OOO.
?>YTIC = 75000.

90

4

/ / / / / / /
/ /

/ /

/ 4

s s

t v

*v. \

/ 1 \ \ \ \ \ \

«,VVVNNVN \

< <r

ffl Registrotion points ofter VECTOR.AMI
+ Registrotion points ot simulotion grid corners

Figure 9. Locations of registration points prior to conversion to
a map coordinate system.

91

RECNO?>3
3

IDTIC = 2
XTIC = -3,543.489
YTIC = 2,500.000
?>IDTIC = 3
?>XTIC = O.
?>YTIC = O.
?>
RECNO?>4

4
IDTIC = 3
XTIC = -3,543.489
YTIC = 72,500.000
?>IDTIC = 4
?>XTIC = 0.
?>YTIC = 75000.
?>
RECNO?>

ENTER COMMAND >QUIT STOP

In this example session, the tic file fbr flow vectors is accessed
with the SELECT command. The tic file-name is the same as the name of the
coverage with a suffix of M .TIC M . The UPDATE command is used to change
the coordinate values of the tics. The user is prompted for the record
number by UPDATE, and after the record number is entered, the variables
are displayed. The coordinates are updated for each tic, in
counterclockwise order, starting in the lower-right corner. The order is
arbitrary, but must be consistent with a subsequent step. A value is
updated by typing the name of the variable (such as XTIC), an equals sign,
and the desired value.

After entering the XTIC and YTIC values for each tic, a carriage
return is given in response to the "?> M prompt. After all tics have been
updated, a carriage return is given in response to the MRECNO?> M prompt.
Finally, the commands QUIT STOP are given to the INFO sub-system.
Additional information about these commands can be found in the INFO
documentation (Henco, 1983).

To transform the flow-vector coverage, it is necessary to have
detailed information about the desired coordinate system. For example,
the coordinate system might be the Universal Transverse Mercator (UTM) map
projection (Synder, 1983). Values for the tics can be interpolated by
locating the tics on a map. Alternatively, if the map does not show
control points for the desired coordinate system, the coordinates of the
tics can be interpolated from the coordinate system used on the map and
projected to the desired coordinate system using the ARC/INFO PROJECT
command.

To use the latter method, pick coordinates of the tics from the map,
enter the coordinates into a file, and use the PROJECT command to create a
file of tic coordinates in the chosen coordinate system. There are many
possible ways to use the PROJECT command (Environmental Systems Research
Institute, Inc., 1987a, p. PROJECT-1 through!PROJECT-27). A example
session of the PROJECT command follows, where a file of latitude and
longitude data (named MLLS M) is projected to a file of UTM coordinates
(named MUTMS M). The values for latitude-longitude in this example were
picked arbitrarily from a map for a square with 75,000-foot sides.

92

Arc: PROJECT FILE LLS UTMS

Please define the input and output map projections.
Use INPUT to define the input projection, OUTPUT
to define the output projection, and END to finish.

Project: INPUT
Project: PROJECTION GEOGRAPHIC
Project: UNITS DMS
Project: QUADRANT NW
Project: FORMAT '(312,IX,13,212)>
Project: FLIP YES
Project: PARAMETERS
Project: OUTPUT
Project: PROJECTION UTM
Project: UNITS METERS
Project: ZONE 14
Project: PARAMETERS
Project: END

The ARC/INFO command: CREATE is used to generate an empty coverage.
The new coverage to be created will be the transformed flow-vector
coverage. The CREATE command requires only the name of the coverage to be
created, for example:

CREATE VECTORS.LI

After creating the empty coverage, the INFO sub-system is used to
enter the values for the tics in the chosen coordinate system that have
either been interpolated from a map or computed by the PROJECT command.
The INFO ADD command is used below to enter the values generated by the
PROJECT command, from the file named UTMS. It is important to enter the
coordinate values in the same order as the corresponding values were
entered in the previous session with the INFO sub-system.

ENTER COMMAND >SELECT VECTORS.LI.TIC
0 RECORD(S) SELECTED

ENTER COMMAND >ADD
1

IDTIO1
XTIO523O85 . 9353
YTIO4039237 . 1O64

2
IDTIO2
XTIO523O23 . 9398
YTIO4062346 . 1676

3
IDTIO3
XTIO5OOOOO . OOO1
YTIO4062315 . 2O85

4
IDTIC>4
XTIO5OOOOO . OOO1
YTIO4039206 . 2156

5
IDTIO

4 RECORD(S) ADDED

ENTER COMMAND >QUIT STOP

93

The final step in the process of converting the flow-vector coverage
to map coordinates is to transform the coverage using the UTM registration
points. The ARC/INFO TRANSFORM command is used to accomplish this
conversion, as shown in the following example.

Arc: TRANSFORM LAYER1 VECTORS.Ll
Transforming coordinates for coverage LAYER1

Transformation scale: O.3O8
RMS error: 50.3

tic id i nput x i nput y output x output y deIta x deIta y

1
2
3
4

0 . 750E+05
0.750E+05
o .000
O.OOO

O.OOO
O.75OE+O5
O.75OE+O5
O.OOO

0.523E+06
O.523E+O6
O.5OOE+O6
O . 5OOE+O6

0.404E+O7
O.4O6E+O7
O.4O6E+O7
O.4O4E+O7

-15.6
15.4

-15.6
15.4

-O.50O
-O . 50O
-0.500
O.OOO

The coverage named VECTORS.Ll now contains flow vectors in UTM
coordinates, and can be displayed with other coverages of the same
geographic area that are stored in the UTM coordinate system.

If another coverage of flow vectors in model units is to be converted
to UTM coordinates, this process can be shortened. The abbreviated
process for converting another coverage is outlined below.

(1) Reset the values for the registration points using the INFO UPDATE
command in the unconverted coverage to the coordinates of the corners
of the simulation grid.

(2) Create a new coverage using the ARC/INFO CREATE command, but, in this
instance, use an optional feature that causes the new coverage to
contain the registration points from an existing coverage. When a
second coverage name is specified with the CREATE command, the
registration points in the second coverage are copied into the newly
created coverage. For example, suppose lihat the coverage LAYER2 has
been created using the VECTOR program, from data prepared by an MMSP
VECT command, and values for the tics haVe been reset as described in
step one. To create a new coverage for the transformed flow vectors
using the UTM registration points in an Existing coverage, the CREATE
command shown below would be used.

CREATE VECTORS.L2 VECTORS.Ll

(3) Use the ARC/INFO TRANSFORM command to convert the coverage in model
coordinates to a coverage in UTM coordinates.

94

CHAPTER 5. PROGRAM DOCUMENTATION

Discussion

This report does not contain a detailed discussion of the internal
construction of the MMSP program. Variable listings, flow charts, and
descriptions of the subroutines may be published in a separate report at a
later date. However, this chapter presents an overview of the program
construction.

The main program is similar to the main program of the Modular Model. A
series of subroutines are called to allocate space in the H Z" array for the
various time- and space-dependent data. The names of each of these
subroutines end with the letters HAL H , as in the Modular Model.
Subsequently, a series of subroutines are called to read and prepare data
that are input to the Modular Model simulation. Again, as in the Modular
Model, the names of each of these subroutines ends with the letters HRP M .

The final function of the main program is to iteratively call the
command-processing subroutine, CTL1CM, to process the MMSP command file. The
main program transfers control to the default-command processing subroutine
named DFT1CM, if end-of-file is reached immediately after reading the title
lines from the command file.

A computer programmer can change the default commands. This is done by
changing the variables NDFTCM and DFTCMD in subroutine DFT1CM. After making
the desired changes the subroutine should be compiled and linked.

The command-processing subroutine consists largely of a single
Fortran 77 BLOCK-IF construction. The operations pertinent to performing a
particular MMSP command are contained within a branch of the BLOCK-IF
structure.

The remaining subroutines and functions can be classified into two
groups: those that pertain to performing a particular MMSP command, and
those that perform an operation common to two or more MMSP commands.

The six blocks of programming statments inserted into the program
(table 1 and attachment A) specify machine-specific constants and
problem-specific constants. The size of the H Z-array" is modified by
altering the value of the variable LENZ. The size of the two-dimen'sional
and three-dimen'sional stacks is modified by changing the value of the
variable ISTKSZ. Machine-specific constants are stored in the variables
TINY, BIG, SMALL, and HUGE. The maximum number of layers is set by the
dimension specification of the variable LAYCON. The default missing-value
indicators are assigned to the three-element array MISVAL. A programmer can
modify these assignments to accomodate different computer systems or
different modeling requirements.

95

Either of two versions of the proprietary IMSL subroutine library can be
used with the program. The MMSP code contains two subroutine-call statements
for every use of an IMSL subroutine in the program. The MMSP subroutines
that contain subroutine-call statements for IMSL subroutines are listed in
table 2. Only one of these subroutine-call statements should be used for
each pair of subroutine-call statements in the MMSP program. The other
subroutine-call statement should be disabled by placing the letter MC M in
column one of the statement. The choice of Fhich call statement should be
enabled depends on which version of the IMSL
system.

Informative and Error

library is used on the computer

Messages

Messages from the MMSP program are written to the print file. Messages
can be grouped into two classes: informative messages and error messages.
Informative messages provide information about how the program is processing
data and are intended to be self-explanatory. Informative messages are not
discussed in this chapter. Error messages provide an indication that
something may be wrong with the specifications given to the program.

Error messages are sub-divided into three groups. The first group is
called "run-fatal 11 error messages because when these errors occur, the MMSP
programs stops, and no processing can be performed until the error is found
and corrected. The second group of error messages is called "command-fatal 11
error messages because when these messages otcur, the MMSP program stops
processing the current command. Processing tesumes with the next command in
the MMSP command file. Command-fatal errorsi may cause subsequent commands in
the MMSP command file to fail, if these subsequent commands require the
results of a previous command that has generated a command-fatal error. The
third group is called "warning" error messages because the MMSP program will
perform the command that generated the warning error message. However, the
user should be aware that the results of the command may be incorrect,
therefore a warning error message is printed.

The remainder of this chapter lists the error messages that may be
printed by the MMSP program. The error messages are listed alphabetically,
within each error-message group. The text of each message is shown, followed
by the name of the subroutine or subroutines that cause the message to be
printed, and one or more potential corrective actions that the user may wish
to perform before running the MMSP program again with the same command file.

Run-Fatal Errors

Two run-fatal errors are generic. Thege errors occur when the MMSP
program attempts and fails to read data. Ttye subroutines listed in table 10
read data from the Fortran units specified ^or input and output for the
Modular Model and MMSP commands. Each of these subroutines may issue an
error message indicating that the expected data type was not found. The text
of the generic error message is shown on the next page of this report.

96

Table 1O. Subroutines of the Modular Model Statistic a/. Processor
t/iat can print generic input error and end-of-fiLe messages

Group of data Subroutine
read by subroutine name

Basic package BASDDF
BASDAL
BASDRP
BASDST

Block-centered flow package BCFDAL
BCFDRP

River package RIVDAL
RIVDRP

Recharge package RCHDAL
RCHDRP

We I I package WELDAL
WELDRP

Drain package DRNDAL
DRNDRP

Evapotranspirat ion package EVTDAL
EVTDRP

Genera I-head boundary package GHBDAL
GHBDRP

Strongly implicit procedure package SIPDAL
SIPDRP

SI ice-successive overreIaxation package SORDAL
SORDRP

Output control package UI01FG
Control file CTL1DF
Modular Model unformatted output U3DREL

ULYREL

CCCCCC: Error reading from unit: NN

where CCCCCC is the name of the subroutine
that generated the message, and

NN is the Fortran unit number.

Each of the subroutines listed in table 10 may print an error message if
it attempts to read data on a Fortran unit and no more data are present. The
text of the generic end-of-file error message is shown below.

CCCCCC: Unexpected E-O-F on unit: NN

When either of these two generic error messages are printed, the user
should review the job control directives, and the unit numbers specified for
the Modular Model and the MMSP program. If no mistake is found, the data
provided on the specified unit number should be reviewed and edited to correct
the error. The remainder of this chapter lists messages in a common format.

97

TEXT: At row _ column _ _ is an illegal layer index
SOURCE: RCHDRP
ACTION: Correct IRCH value in recharge package input.

TEXT: Aquifer type 1 is only allowed in top layer
SOURCE: BCFDAL
ACTION: Correct LAYCON value in block-centered flow package input.

TEXT: DYNAMIC STORAGE EXCEEDED
_ ELEMENTS ALLOCATED
_ ELEMENTS AVAILABLE

SOURCE: CTL1CK
ACTION: Increase Z array size in ZARRAY.COMMON.INS.

TEXT: Illegal recharge option: _...stopping
SOURCE: RCHDAL
ACTION: Correct NRCHOP value in recharge package input.

TEXT: IRCH must be read for 1st stress period
SOURCE: RCHDRP
ACTION: Add IRCH for first stress period in recharge package input

TEXT: Number of layers specified: _ greater than 80...
stopping due to insufficient space

SOURCE: BCFDAL
ACTION: Increase size of LAYCON array in FLWCOM.INS

or correct NLAY value in basic package input.

TEXT: NWELLS __ is greater than MXWELL __
SOURCE: WELDRP
ACTION: Increase MXWELL or decrease NWELLS in well package input.

98

TEXT: Preceding WELL is outside model limits.
SOURCE: WELDRP
ACTION: Correct coordinates of well in well package input.

TEXT: WELLS must be read for the first stress period
SOURCE: WELDRP
ACTION: Add wells for first stress period in well package input

Command-Fatal Errors

TEXT: All _ values in the array are the same: _
SOURCE: HIS1EX
ACTION: None required. Histogram is uninformative. May need to

correct data-set name.

TEXT: Array-size error occurred reading _ on unit _
SIZE READ SIZE EXPECTED

NROW NCOL NLAY NROW NCOL NLAY

SOURCE: ULYRELor U3DREL
ACTION: Correct unit number in READ command, job control directives,

or array control record.

TEXT: Attempted to READ _ cut points; minimum = 3
SOURCE: REA1CL
ACTION: Correct NUCLAS specification in READ command,

increase number of cut points, or use computed classes.

TEXT: Attempted to READ _ cut points; maximum = 20
SOURCE: REA1CL
ACTION: Correct NUCLAS specification in READ command,

decrease number of cut points, or use computed classes.

99

TEXT: Comparison limit is non-numeric
SOURCE: CTL1CM
ACTION: Correct the limit field on the comparison command.

TEXT: Data set _ layer _ is too large
Maximum number of layers = _

SOURCE: ULC1LY
ACTION: Correct the layer number on the corresponding command

TEXT: Data set: _ not available. IUNIT Irom basic package for
data set = _

SOURCE: ULC1SP
ACTION: Correct job control directive for basic package input, or

correct data-set name for the corresponding command.

MVMVMVMVMMMM^B^B^B^BMMVMVMMVMVMvaBMMVMvaBMVMVMVMMMVMMVwMVMM^B^BaBMVMMMVMVMMMVMaBaBMVaBMMVaBMMVMaBMMvaBOBMM^M^^BlBBIB^^^I

TEXT: Data-set type for _ is unknown: _
SOURCE: REA1EX
ACTION: Correct number of dimensions or arrziy type on READ command.

TEXT: Data set _ was requested, but not J'ound
SOURCE: ULC1DS
ACTION: Correct data-set name on corresponding command, reorder commands,

or add MATH/READ command.

TEXT: Error occurred reading _ on unit _
FOUND: stress period _ time step _

EXPECTED: stress period _ time step _
SOURCE: U3DREL or ULYREL
ACTION: Correct model-output controls and re-run model, or

correct data-set name or unit number on READ command.

TEXT: File unit specified for _ not an integer: _
SOURCE: CTL1CM
ACTION: Correct file unit number on corresponding WRIT, READ, HEAD,

or VECT command.

100

TEXT: Graphic output unit or vector factor is non-numeric
SOURCE: CTL1CM
ACTION: Correct file unit or vector scaling factor on VECT command.

TEXT: HEAD and DRAWDOWN are not available with default output control
SOURCE: UI01FG
ACTION: Correct model-output controls and re-run model, or

correct data-set name on the corresponding command.

TEXT: Illegal layer specified: _ for masking
SOURCE: MAS1EX or MAS1MV
ACTION: Correct layer number on corresponding command.

TEXT: Insufficient data to compute statistics, number of
observations = _

SOURCE: STA1EX
ACTION: None required. May need to correct mask field or layer number.

WWWWWWMWW«WWM*WW.I*WWMWW W W^WWW WWMWWW___<B*WWMWW«*WW«WWWWWWWWWWWW<B*«««**«««*WWWWWWW« W <

TEXT: Insufficient graphic storage available
SOURCE: VEC1EX
ACTION: Increase Z array size in ZARRAY.COMMON.INS.

Look for the message near the beginning of the print file with
the following text:

Insufficient space available for vector calculation
Need _ more elements of dynamic storage.

TEXT: Invalid format code: _
SOURCE: PRT1EX or WRT1EX
ACTION: Correct format code in WRIT or PRIN command.

101

TEXT: _ is not available for reading for stress period _
time-step _ because save flags are not set

SOURCE: REA1EX
ACTION: Correct model-output controls and re-run model, or

correct data-set name or stress period and time step
on READ command.

TEXT: Layer specified for _ not an integer: _
SOURCE: CTL1CM
ACTION: Correct the layer number for the corresponding data array.

TEXT: Logarithmic scaling inappropriate. All data within the same
power-of-ten

SOURCE: HIS1EX
ACTION: Change the sign of the number of classes specified with the HIST

command, or use a READ command to supply user-specified cutpoints
and set the number of classes on the HIST command to zero.

TEXT: Mask specifiers for _ not all integers: _
SOURCE: CTL1CM
ACTION: Correct the mask fields on the corresponding command.

TEXT: No (EOT or TOP) layer _ exists because LAYCONCJ = __
SOURCE: ULC1LY
ACTION: Correct layer number on corresponding command.

TEXT: No (HEAD or DRAWDN) layer __ exists because IOFLG (__) = _
SOURCE: ULC1LY
ACTION: Correct model-output controls and re-run model, or

correct layer number on corresponding command.

TEXT: No model coordinates were within the slicing plane
SOURCE: SLI1EX I
ACTION: Correct slicing coordinates on SLI(t command.

102

TEXT: Non-numeric row, column, or layer for node number _
SOURCE: HEA1EX
ACTION: Correct coordinates on HEAD command.

TEXT: Number of histogram cut points _ is not an integer: _
SOURCE: REA1CL
ACTION: Correct number of cut points on READ command.

TEXT: Number of histogram classes for _ not an integer: _
SOURCE: CTL1CM
ACTION: Correct number of classes on HIST command.

TEXT: Orientation of _ is incompatible with the slice
SOURCE: VEC1EX
ACTION: Correct orientation on VECT command or change the

	coordinates given with the SLIC command.

TEXT: READ command for _ Stress period _ Time step _ is beyond
	the defined limit. Number of time steps for stress period = _

SOURCE: CTL1CM
ACTION: Correct the time step on the READ command.

TEXT: READ command for _ Stress period _ Time step _ is beyond
	the defined limit. Number of stress periods = _

SOURCE: CTL1CM
ACTION: Correct the stress period on the READ command.

TEXT: (Row, column or layer) number _ is less than 0 or greater than
SOURCE: HEA1EX
ACTION: Correct the coordinate on the HEAD command.

TEXT: Some layer thickness is non-numeric
SOURCE: CTL1CM
ACTION: Correct the thickness value on the THIC command.

103

TEXT: Some slicing coordinate is non-numeric: _
SOURCE: CTL1CM
ACTION: Correct the coordinate on the SLIC command.

TEXT: Specified (row, column, or layer) i^ outside the range of model
coordinates

SOURCE: SSLI1Y ;
ACTION: Correct the coordinate on the SLIC command.

TEXT: Stress period and time step not integer: _
SOURCE: CTL1CM
ACTION: Correct the stress period and time step on the corresponding

READ command.

TEXT: Unable to reset model-boundary array because computed heads
were not saved

SOURCE: REB1EX
ACTION: Correct model-output controls and re-run model.

TEXT: Unable to compare, data sets not same size
Length of _ = _
Length of _ = _

SOURCE: CTL1CM
ACTION: Add a layer number for the three-dimensional data array, and

compare the arrays by layers, or correct data-set name.

TEXT: Unable to compute, data sets not same size
Length of _ = _
Length of _ = _

SOURCE: CTL1CM
ACTION: Add a layer number for the three-dimensional data array, and

compute a data array for each layer, or correct data-set name

TEXT: Unable to create user-boundary mask, coordinates are colinear
SOURCE: SSLI1Q
ACTION: Correct slicing coordinates on the SLIC command.

104

TEXT: Unable to read command line
SOURCE: CTL1CM
ACTION: Correct job control directives.

TEXT: Unit number for reading CLASS is not an integer: _
SOURCE: REA1CL
ACTION: Correct unit number on READ command.

TEXT: Unknown command: _ refer to table 4
SOURCE: CTL1CM
ACTION: Correct command name. Valid commands are listed in table 4.

TEXT: Unknown operator: _
SOURCE: COM1EX OR MTH1EX
ACTION: Correct operator on COMP or MATH command.

TEXT: Unknown orientation specified: _
SOURCE: VEC1EX
ACTION: Correct orientation on VECT command.

TEXT: Value too large: _ deactivated nodes may not have been masked
SOURCE: HIS1EX
ACTION: Use the REBO command to update the model-boundary array, and use

	a model-boundary mask to mask inactive nodes on the HIST command.

TEXT: Vectors requested but no slice has been defined
SOURCE: CTL1CM
ACTION: Add a SLIC command prior to the VECT command.

TEXT: Vectors requested but (RIFACE, LOFACE, FRFACE) has not been read
SOURCE: CTL1CM
ACTION: Read RIFACE, FLFACE, and FRFACE for the desired stress period and

time step using the READ command prior to the VECT command.

105

Warnings

TEXT: _ nodes were set to missing because their layer(s)
was not saved for stress period _ , time step _

SOURCE: HEA1EX
ACTION: Correct model-output controls and rehrun model.

TEXT: Computed heads were not saved for layer: _, stress period: _,
time step _

SOURCE: REB1EX
ACTION: Correct model-output controls and rd-run model.

TEXT: Illegal missing-value indicator #_: _
Set to default indicator: _

SOURCE: MAS1MV
ACTION: Correct missing-value indicator on the WRIT or PRIN command.

TEXT: Invalid value for model-boundary mask: _Mask ignored
SOURCE: MAS1EX or MAS1MV
ACTION: Correct the model-boundary mask key for the corresponding command

TEXT: Number of observations < 3, therefore skewness was not computed
SOURCE: SSTA1E
ACTION: None required. Some masking specification may be erroneous.

TEXT: Overflow or underflow occurred, therefore geometric and harmonic
means were not computed

SOURCE: SSTA1E
ACTION: None required. May need to mask some data values, or

create a new data array scaled by some convenient power of ten.

106

TEXT: Overflow or underflow occurred, therefore skewness was not computed
SOURCE: SSTA1E
ACTION: None required. May need to mask some data values, or

create a new data array scaled by some convenient power of ten.

TEXT: Populating layer _ with zeroes because _ has no corresponding
layer

SOURCE: MTH1EX
ACTION: If data array is HEAD or DRAWDN: correct model-output controls

and re-run model. Otherwise, no action required.

TEXT: Unable to find data set _ layer _ two-dimensional;
Retaining complete data set

SOURCE: ULC1LY
ACTION: If using the layer-number field to specify a masking layer: no

action is required. Otherwise, set layer number to zero or
correct data-set name.

TEXT: Standard deviation = 0, therefore skewness was not computed
SOURCE: SSTA1E
ACTION: None required.

TEXT: Upper and lower quartiles equal, therefore non-parametric
skewness was not computed

SOURCE: SSTA1E
ACTION: None required.

TEXT: User-boundary mask requested, but user boundary has not been
defined....Mask ignored

SOURCE: COM1EX, MAS1EX or MAS1MV
ACTION: Use the SLIC or READ commands to define a user boundary prior to

the command using the user-boundary mask, or disable the user-
boundary mask.

107

TEXT: User-specified classes requested, but have not been read;
using 20 arithmetic computed classes

SOURCE: HIS1EX
ACTION: Use READ command to enter user-specified cut points, or

specify the number of computed classes desired on the HIST commanc

TEXT: Zero or negative values present in matrix, therefore geometric anc
harmonic means were not computed

SOURCE: SSTA1E
ACTION: None required. May need to mask some data values.

TEXT: Zero-mask not allowed during comparison command
SOURCE: COM1EX
ACTION: Set the zero-mask key to zero on the COMP command.

108

REFERENCES

American National Standards Institute, Inc., 1978, Programming Language
FORTRAN: New York, American National Standards Institute.

Buhler, Shirrell, 1986, P-STAT User's manual (Version 8): Boston, Duxbury,
852 p.

Chow, V.T., 1964, Frequency analysis in Chow, V.T., 1964, Handbook of
applied hydrology: New York, McGraw-Hill, p. 8-8.

David, H.A., 1962, Special problems in testing hypotheses in Sarhan, A.E., and
Greenberg, B.C., Contributions to order statistics: New York,
Wiley, p. 113.

Environmental Systems Research Institute, Inc., 1987a, Users guide ARC/INFO,
v. 2 o/2: Redlands, Calif., Environmental Systems Research Institute.

 1987b, Users guide ARCPLOT: Redlands, Calif., Environmental Systems
Research Institute.

Henco Software, Inc., 1983, INFO Reference manual, Revision 9.0: Waltham,
Mass., Henco Software, Inc.

IMSL Inc., 1982, IMSL Library reference manual, Ed. 9, (4 volumes):
Houston, Tex., IMSL, Inc.

 1987, User's manual STAT/LIBRARY FORTRAN subroutines for statistical
analysis, Version 1.0: Houston, Tex., IMSL, Inc., 1232 p.

Johnson, A.I., 1967, Specific yield Compilation of specific yields for
various materials: U.S. Geological Survey Water-Supply Paper 1662-D,
74 p.

Johnson, E.G., 1983, FORTRAN 77 Reference guide (third ed.): Framingham,
Mass., Prime Computer Inc.

Kernodle, J.M., and Philip, R.D., 1988, Using a geographic information
system to develop a ground-water flow model: American Water Resources
Association Monograph, series no. 14, pp.191-202.

McDonald, M.G., and Harbaugh, A.W., 1988, A modular three-dimensional
finite-difference ground-water flow model: Techniques of Water-Resources
Investigations of the U.S. Geological Survey, Book 6, chap. Al, 528 p.

Synder, J.P., 1983, Map projections used by the U.S. Geological Survey:
U.S. Geological Survey Bulletin 1532 (second ed.), 313 p.

Todd, D.K., 1964, Groundwater in Chow, V.T., 1964, Handbook of applied
hydrology: New York, McGraw-Hill, p. 13-5.

U.S. Geological Survey, 1980, U.S. Geological Survey Yearbook, Fiscal Year
1979: p. 92.

109

Attachment A.--Blocks of code inserted into the Modular Model Statistical
Processor Program

C ZARRAY.COMMON.INS - SET SIZE OF THE Z-ARRAY AND ALLOCATE SPACE FOR IT
PARAMETER (LENZ=5OOOOO)
COMMON /ZARRAY/ Z(LENZ)

C STKSIZE.INS - SET SIZE OF TWO- AND THREE-DIMENSIONAL STACKS
PARAMETER (ISTKSZ=4)

C STKDEF.INS - ALLOCATE SPACE FOR STACK-SIZE DEPENDENT VARIABLES
INTEGER LCU2DS(ISTKSZ)
INTEGER LCU3DS(ISTKSZ)
INTEGER ISKSP (ISTKSZ)
INTEGER ISKTS (ISTKSZ)
CHARACTER U2DDSN(ISTKSZ)*6
CHARACTER U3DDSN(ISTKSZ)*6
CHARACTER U2DANM(ISTKSZ)*24
CHARACTER U3DANM(ISTKSZ)*24

C TINY.INS - DEFINE MACHINE-DEPENDENT CONSTANT?
DOUBLE PRECISION HUGE, SMALL ;
PARAMETER (TINY =l.OE-36)
PARAMETER (BIG =1.OE+36)
PARAMETER (SMALL=-1.OD+97OO)
PARAMETER (HUGE =+1.OD+97OO)

C FLWCOM.INS - ALLOCATE SPACE FOR MAXIMUM NUMBER OF LAYERS
COMMON /FLWCOM/ LAYCON(SO)

C
C MISVAL.INS - DEFINES THE DEFAULT MISSING-VALUE INDICATORS

REAL MISING(3)
CHARACTER MISVAL(3)*1O
DATA MISVAL(l) /'-123456E2O'/
DATA MISVAL(2) /'-123457E2O'/
DATA MISVAL(3) /'-123458E2O'/

110

Attachment B. --Modular model statistical processor program listing.

PROGRAM MMSP
C
C U.S. Geological Survey Program MMSP is used for performing statistical
C analysis of simulations made using the modular, three-dimensional
C finite-difference, ground-water flow model by McDonald and Harbaugh.
C Use of this program is described in U.S. Geological Water-Resources
C Investigations Report 89-4159, by Jonathon C. Scott. This program is
C written in the Fortran 77. The program was last modified and run on
C a Prime 9955-11 minicomputer running revision 21 of the PRIMOS operating
C system on June 12, 1989.
C
C Although this computer software has been used by the U.S. Geological Survey,
C no warranty, expressed or i mp I led, is made by the USGS as to the accuracy
C and functioning of the program and related program material nor sha I I the
C fact of distribution constitute any such warranty, and no responsibi I i ty
C is assumed by the USGS in connection therewith.
C

C MAIN PROGRAM FOR MODULAR MODEL STATISTICAL PROCESSOR (MMSP)
C SPECIFICATIONS :

$ INSERT ZARRAY . COMMON . INS
SINSERT STKSIZE.INS
$ INSERT STKDEF.INS

DIMENSION IUNIT(24) ,CLASES(2O) ,IPKGSP(12) , PLANE (4)
CHARACTER TITLE (4) *128, LINE*8O
LOGICAL EXCMD, EOF, UBIN
INTEGER OUNIT,LCWDS(2)

C
Cl ASSIGN BASIC PACKAGE UNIT, OUTPUT FILE UNIT, AND CONTROL FILE UNIT

INBAS = 5
OUNIT = 6
INCTL = 7

C
C2 INITIALIZE THE SIZE OF THE SIMULATION & MMSP VARIABLES

CALL BASDDF (TITLE, NCOL, NROW, NLAY, NODES, INBAS, OUNIT, IUNIT, NPER)
CALL CTL1DF (INCTL, OUNIT, TITLE, UBIN, PLANE, EOF, IUNIT, NUCLAS,

1 IPKGSP,NCMDRD,NCMDEX, NOPRT)
C
C3 ALLOCATE SPACE FOR THE MMSP & THE MODEL PACKAGE DATA ARRAYS

CALL CTL1AL (ISUMX , ISUMZ , NCOL , NROW , NLAY , NPER , LCNTS , LCUBOU , LCU2DS ,
1 LCU3DS , LCWDS , U2DDSN , U2DANM , U3DDSN , U3DANM , ISKSP , ISKTS , LCWELL ,
2 LCIRCH,LCRECH,LCDELL)
IF (INBAS .GT. O) CALL BASDAL

1 (ISUMX, ISUMZ, NCOL, NROW, NLAY, INBAS, OUNIT, LCIBOU, LCSTRT, LCIOFG)
IF (IUNIT(1) .GT. 0)CALL BCFDAL (ISUMX, ISUMZ, IUNIT (1) , ISS, NCOL,

1 NROW , NLAY , OUNIT , IBCFCB , LCSC 1 , LCBOT , LCTOP , LCDELC , LCDELR , NOPRT)
IF (IUNIT (2) .GT. 0)CALL WELDAL

1 (ISUMX, ISUMZ, MXWELL, IUNIT (2) , OUNIT, IWELCB, LCWELL)
IF (IUNIT(3) .GT. 0) CALL DRNDAL (ISUMX, IUNIT (3) , OUNIT, IDRNCB)
IF (IUNIT(8) .GT. O) CALL RCHDAL(ISUMX, ISUMZ, NRCHOP, IUNIT (8) ,

1 OUNIT, IRCHCB, NCOL, NROW, LCIRCH, LCRECH)
IF (IUNIT(5) .GT. O) CALL EVTDAL (ISUMX, IUNIT (5) , OUNIT, IEVTCB)
IF (IUNIT (4) .GT. O) CALL RIVDAL (ISUMX, IUNIT (4) , OUNIT, IRIVCB)
IF (IUNIT(7) .GT. O) CALL GHBDAL (ISUMX, IUNIT(7) , OUNIT, IGHBCB)
IF (IUNIT(9) .GT. O) CALL SIPDAL (ISUMX, IUNIT (9) , OUNIT)
IF (lUNIT(ll) .GT. O) CALL SORDAL (ISUMX, lUNIT(ll) , OUNIT)

C
C4 CHECK THE REMAINING SPACE IN THE "Z" ARRAY AND ALLOCATE IT

CALL CTL1CK (ISUMX, ISUMZ, LENZ, NLAY, NODES, LCGRAF, LNGRAF, OUNIT)

111

c
C5 READ AND PREPARE DATA FOR THE ENTIRE SIMULATION

IF (INBAS .GT. O) CALL BASDRP (Z(LCIBOU),Z(LCSTRT),INBAS,NCOL,
1 NROW,NLAY,NODES,IUNIT(12),IHEDUN,IDDNUN,OUNIT,NOPRT)
IF (IUNIT(1) .GT. 0)CALL BCFDRP (Z(LCIBOU),Z(LCSCl) , Z(LCBOT),

1 Z (LCTOP) , Z (LCDELR) , Z (LCDELC) , Z (LCDELL) , 3JUNIT (1) , ISS , NCOL, NROW,
2 NLAY,NODES,OUNIT,Z(LCU3DS(1)),NOPRT) I
IF (IUNIT(9) .GT. O) CALL SIPDRP (IUNIT(9),OUNIT)
IF (IDNIT(ll) .GT. 0)CALL SORDRP (IUNIT(H) , OUNIT)
IF (INBAS .GT. O) CALLBASDST (INBAS,NPEFl,Z(LCNTS),KSP,KTS,NLAY,

1 Z(LCIOFG),OUNIT)
C
C6 ADVANCE TO FIRST STRESS PERIOD AND TIME SiTEP OF MODEL INPUT DATA

IF (IUNIT(2) .GT. 0)CALL WELDRP (NROW, NCCIL, NLAY, Z (LCWELL) ,
1 NWELLS,MXWELL , IUNIT(2),IPKGSP(2),OUNIT,
IF (IUNIT(3) .GT. 0)CALL DRNDRP (IUNIT(3)

TRUE.,NOPRT)
,OUNIT)

IF (IUNIT (8) .GT. 0)CALL RCHDRP (NRCHOP , 7. (LCIRCH) , Z (LCRECH) ,
1 NROW,NCOL,NLAY,IUNIT(8),IPKGSP(8),OUNIT J .TRUE. ,NOPRT)
IF (IUNIT(S) .GT. 0)CALL EVTDRP (NCOL,NRQW,IUNIT(5),OUNIT,

1 Z(LCU2DS(1)) , NOPRT)
IF (IUNIT(4) .GT. 0)CALL RIVDRP (IUNIT(4),OUNIT)
IF (IUNIT(7) .GT. 0)CALL GHBDRP (IUNIT(7),OUNIT)

C
C7 READ AND PROCESS USER COMMANDS
1000 CALL CTL1CM (LINE,NROW,NCOL,NLAY,INCTL,OUNIT,EXCMD,EOF,UBIN,

1 U2DDSN,U3DDSN,U2DANM,U3DANM,ISKSP,ISKTS,LCSTRT,LCIBOU,LCSCl,
2 LCTOP,LCIOFG,LCBOT,LCDELR,LCDELC,LCWELL,NWELLS,MXWELL,NRCHOP,
3 LCIRCH,LCRECH,LCU2DS,LCU3DS,LCWDS,IUNI ,NUCLAS,CLASES,TITLE,
4 Z(LCIBOU),Z(LCUBOU),Z(LCWDS(1)),Z(LCWDS(2)),Z(LCU2DS(4)),
5 Z(LCU3DS(4)),NPER,Z(LCNTS),KSP,KTS,Z(LCIOFG),LCUBOU,LCDELL,
6 Z(LCDELR),Z(LCDELC),Z(LCDELL),LCGRAF, UJGRAF,IBCFCB,IWELCB,
7 IDRNCB,IRCHCB,IEVTCB,IRIVCB,IGHBCB,IHEDUN,IDDNUN,IPKGSP,PLANE,
8 NOPRT)

C
C8 IF NO COMMANDS GIVEN, EXECUTE THE DEFAULT COMMANDS

IF (EOF .AND. NCMDRD .EQ. O)
X CALL DFT1CM (LINE,NROW,NCOL,NLAY,INCTL,OUNIT,EXCMD,EOF,UBIN,
1 U2DDSN,U3DDSN,U2DANM,U3DANM,ISKSP,ISKTS,LCSTRT,LCIBOU,LCSCl,
2 LCTOP,LCIOFG,LCBOT,LCDELR,LCDELC,LCWELL,NWELLS,MXWELL,NRCHOP,
3 LCIRCH,LCRECH,LCU2DS,LCU3DS,LCWDS,IUNIT,NUCLAS,CLASES,TITLE,
4 Z(LCIBOU),Z(LCUBOU),Z(LCWDS(1)),Z(LCWDS(2)),Z(LCU2DS(4)),
5 Z(LCU3DS(4)),NPER,Z(LCNTS),KSP,KTS,Z(LCIOFG),LCUBOU,LCDELL,
6 Z(LCDELR),Z(LCDELC),Z(LCDELL),LCGRAF,LNGRAF,IBCFCB,IWELCB,
7 IDRNCB,IRCHCB,IEVTCB,IRIVCB,IGHBCB,IHEDUN,IDDNUN,IPKGSP,PLANE,
8 NOPRT,NCMDEX,NCMDRD)

C
C9 ITERATE COMMAND PROCESSING UNTIL END-OF-FILE REACHED ON COMMAND FILE

IF (EOF) GOTO 2001
NCMDRD = NCMDRD + 1
IF (EXCMD) NCMDEX = NCMDEX + 1
GOTO 1OOO

C
CIO - END OF PROGRAM
2001 WRITE (OUNIT,9) NCMDEX,NCMDRD

9 FORMAT ('1 MODULAR GROUND-WATER MODEL STATISTICAL PROCESSING',
1 ' TERMINATING NORMALLY',//,19,' COMMANDS EXECUTED',/,19,
2 ' COMMANDS READ')
ENDFILE (OUNIT)
STOP
END

112

SUBROUTINE CTL1DF (INCTL,OUNIT.TITLE,UBIN,PLANE,EOF,IUNIT,NUCLAS,
1 IPKGSP,NCMDRD,NCMDEX,NOPRT)

C
C READ TITLES & INITIALIZE VARIABLES
C

INTEGER OUNIT,IUNIT(24),IPKGSP(12)
CHARACTER TITLE(4)*128, PRTFLG*!
DIMENSION HEADNG(32), PLANE(4)
LOGICAL UBIN., EOF

C
Cl SET FLAGS FOR ENTRY OF USER-BOUNDARY, AND END OF COMMAND FILE TO FALSE

UBIN = .FALSE.
EOF = .FALSE.

C
C2 SET NUMBER OF USER-SPECIFIED FREQUENCY CLASSES, NUMBER OF COMMANDS READ.
C NUMBER OF COMMANDS EXECUTED TO ZERO

NUCLAS = O
NCMDRD = O
NCMDEX = O

C
C3 SET THE TIME VARIABLE FOR ALL PACKAGES TO ZERO

DO 1O 1=1,12
IPKGSP(I) = O

1O CONTINUE
C
C4 SET THE COEFFICIENTS OF THE SLICING PLANE TO ZERO

DO 15 1=1,4
PLANE(I) =O.O

15 CONTINUE
C
C5 READ AND WRITE HEADING FROM THE COMMAND FILE

READ (INCTL,1,ERR=98,END=99) HEADNG
WRITE (TITLE(2),5) HEADNG
READ (INCTL,1,ERR=98,END=99) HEADNG,PRTFLG
WRITE (TITLE(3),5) HEADNG

2O CONTINUE
1 FORMAT (20A4,/,12A4,:,31X,A1)
5 FORMAT (32A4)

TITLE(4) = ''
NOPRT = O
IF (PRTFLG .NE. ' ') NOPRT = -1
RETURN

C
98 WRITE (OUNIT,3) INCTL
3 FORMAT (' CTL1DF: Error reading from unit: ',12)
STOP

99 WRITE (OUNIT,4) INCTL
4 FORMAT (' CTL1DF: Unexpected E-O-F on unit: ',12)

STOP
END

113

SUBROUTINE BASDDF (TITLE,NCOL,NROW,NLAY,NODES,INBAS,OUNIT,
1 IUNIT,NPER)

C
C DEFINE BASIC MODEL PARAMETERS
C

DIMENSION IUNIT(24),HEADNG(32)
CHARACTER*128 TITLE(4)
INTEGER OUNIT

C
Cl READ/PRINT TITLE LINES

WRITE (OUNIT,!)
1 FORMAT (1H1,20X,'U.S. GEOLOGICAL SURVEY MODULAR',
1 ' FINITE-DIFFERENCE GROUND-WATER MODEL',/,
2 30X,'STATISTICAL PRE- AND POST- PROCESSOR',/)
READ (INBAS,2,ERR=98,END=99) HEADNG
WRITE (TITLE(1),6) HEADNG
WRITE (OUNIT,3) TITLE(1)

3 FORMAT (1X,A128)
6 FORMAT (32A4)
2 FORMAT (20A4)

C
C2 READ/PRINT SIMULATION SIZING VARIABLES

READ (INBAS,4,ERR=98,END=99) NLAY,NROW,NCOL,NPER,IPADl
4 FORMAT (5110)

NODES = NCOL * NROW * NLAY
WRITE (OUNIT,5) NLAY,NROW,NCOL,NODES,NPER

5 FORMAT (/,' LAYERS =',I1O,' ROWS =',I1O,' COLUMNS =',I1O,
1 ' NODES =',110,' STRESS PERIODS ='I1O)

C
C3 READ THE ARRAY DESCRIBING WHICH PACKAGES/FILE UNITS ARE USED

READ (INBAS,101,ERR=98,END=99) IUNIT
101 FORMAT (2413)

WRITE (OUNIT,102) (1,1=1,24), IUNIT ,
102 FORMAT (//,' I/O UNITS:',/,IX,'ELEMENT OF IUNIT:',2413,

1 /,1X,' I/O UNIT:',2413)
RETURN

C
98 WRITE (OUNIT,981) INBAS

981 FORMAT (' BASDDF: Error reading from unit: ',12)
STOP

99 WRITE (OUNIT,993) INBAS
993 FORMAT (' BASDDF: Unexpected E-O-F on unit: ',12)

STOP
END

114

SUBROUTINE CTL1AL (ISUMX,ISUMZ,NCOL,NROW,NLAY,NPER,LCNTS,
1 LCUBND,LCU2DS,LCU3DS,LCWDS,U2DDSN,U2DANM,U3DDSN,U3DANM,
2 ISKSP t ISKTS t LCWELL t LCIRCH,LCRECH,LCDELL)

C
C ALLOCATE SPACE NEEDED FOR CORE OF STATISTICAL PACKAGE
C (VARIABLE ISUMX IS INCLUDED FOR POSSIBLE FUTURE SIZING OF MODEL)
C
SINSERT STKSIZE.INS
SINSERT STKDEF.INS

INTEGER LCWDS(2)
C
Cl DEFINE CONSTANTS AND SET THE »Z" ARRAY POINTER AT THE BEGINNING

NCR = NCOL * NROW
NCRL = NCR * NLAY
ISUMX = 1
ISUMZ = 1

C
C2 ALLOCATE SPACE FOR NUMBER OF TIME STEPS IN EACH STRESS PERIOD

LCNTS = ISUMZ
ISUMZ = ISUMZ + NPER

C
C3 ALLOCATE SPACE FOR WORKING DATA SETS

LCWDS(1) = ISUMZ
ISUMZ = ISUMZ + NCRL * 2
LCWDS(2) = ISUMZ
ISUMZ = ISUMZ + NCRL * 2

C
C4 ALLOCATE SPACE FOR USER BOUNDARY ARRAY

LCUBND = ISUMZ
ISUMZ = ISUMZ + NCRL

C
C5 ALLOCATE SPACE FOR USER 2-DIMENSIONAL STACK

DO 1 I=1,ISTKSZ
LCU2DS(I) = ISUMZ
ISUMZ = ISUMZ + NCR * 2
U2DDSN(I) = ''
U2DANM(I) = "

1 CONTINUE
C
C6 ALLOCATE SPACE FOR USER 3-DIMENSIONAL STACK

DO 2 I=1,ISTKSZ
LCU3DS(I) = ISUMZ
ISUMZ = ISUMZ + NCRL * 2
U3DDSN(I) = ''
U3DANM(I) = ''
ISKSP(I) = O
ISKTS(I) = O

2 CONTINUE
C
C7 ALLOCATE SPACE FOR THICKNESS OF LAYERS

LCDELL = ISUMZ
ISUMZ = ISUMZ + NLAY

C
C8 PLACE INITIAL ARRAY POINTERS FOR WELL, IRCH, AND RECH

LCWELL = 1
LCIRCH = 1
LCRECH = 1
RETURN
END

115

SUBROUTINE BASDAL (ISUMX,ISUMZ,NCOL,NROW,NLAY,IN,OUNIT,
1 LCIBOU,LCSTRT,LCIOFG)

C
C ALLOCATE SPACE FOR THE BASIC PACKAGE
C

INTEGER OUNIT
C
Cl READ & IGNORE: IAPART AND ISTRT

READ (IN,1,ERR=98,END=99) IAPART, ISTRT
1 FORMAT (2110)

C
C2 ALLOCATE SPACE FOR MODEL BOUNDARY ARRAY

NCR = NCOL * NROW
NCRL = NCR * NLAY
LCIBOU = ISUMZ
ISUMZ = ISUMZ + NCRL

C
C3 ALLOCATE SPACE FOR STARTING HEADS

LCSTRT = ISUMZ
ISUMZ = ISUMZ + NCRL

C
C4 ALLOCATE SPACE FOR LAYER I/O FLAGS (ONLY DISK-NOT PRINT)

LCIOFG = ISUMZ
ISUMZ = ISUMZ + (2 * NLAY)
RETURN

C
98 WRITE (OUNIT,2) IN
2 FORMAT (' BASDAL: Error reading from unit: ',12)

STOP
99 WRITE (OUNIT,3) IN
3 FORMAT (' BASDAL: Unexpected E-O-F on unit: ',12)

STOP
END

SUBROUTINE BCFDAL (ISUMX,ISUMZ,IN,ISS,NCOL,NROW,NLAY,OUNIT,IBCFCB,
1 LCSCI,LCBOT,LCTOP,LCDELC,LCDELR,NOPRT)

C
C ALLOCATE SPACE FOR THE BLOCK-CENTERED FLOW PACKAGE
C

INTEGER OUNIT
$INSERT FLWCOM.INS
C
Cl READ STEADY-STATE FLAG, AND BCF CELL-BY-CELL UNIT NUMBER

READ (IN,2,ERR=98,END=99) ISS,IBCFCB
2 FORMAT (2110)

C
C2 CHECK IF DIMENSION OF LAYCON HAS BEEN EXCEEDED

IF (NLAY .GT. 8O) THEN
WRITE (OUNIT,11) NLAY

11 FORMAT (' Number of layers specified:',14,/,
1 ' greater than 8O...stopping due to insufficient space')
STOP
END IF

C
C3 READ LAYER-TYPE INDEX

READ (IN,51) (LAYCON(I),1=1,NLAY)
51 FORMAT (4012)

IF (NOPRT .GE. O) WRITE (OUNIT,52)
52 FORMAT (//,6X,'LAYER AQUIFER TYPE',/,6X,19('-'))

116

c
C4 CALCULATE NUMBER OF TOP AND BOTTOM LAYERS

NBOT = 0
NTOP = 0
DO 100 I=1,NLAY

L = LAYCON (I)
IF (NOPRT .GE. 0) WRITE (OUNIT,7) I, L

7 FORMAT (IX,19,110)
IF (LAYCON(I) .EQ. 1 .AND. I .NE. 1) THEN

WRITE (OUNIT,8)
8 FORMAT (' Aquifer type 1 is only a I lowed in top layer')

STOP
END IF

C
C4A -- LAYER TYPE 1 AND 3 NEED SPACE FOR A BOTTOM ARRAY

IF (L .EQ. 1 .OR. L .EQ. 3) NBOT = NBOT + 1
C
C4B -- LAYER TYPE 2 AND 3 NEED SPACE FOR A TOP ARRAY

IF (L .EQ. 2 .OR. L .EQ. 3) NTOP = NTOP + 1
100 CONTINUE

C
C5 ALLOCATE SPACE FOR STORAGE COEFFICIENT

NCR = NROW * NCOL
IF (ISS .EQ. 0) THEN

LCSC1 = ISUMZ
ISUMZ = ISUMZ + (NLAY * NCR)

ELSE
LCSC1 = 1

END IF
C
C6 ALLOCATE SPACE FOR AQUIFER LAYER BOTTOM

LCBOT = ISUMZ
ISUMZ = ISUMZ + (NBOT * NCR)

C
C7 ALLOCATE SPACE FOR AQUIFER LAYER TOP

LCTOP = ISUMZ
ISUMZ = ISUMZ + (NTOP * NCR)

C
C8 ALLOCATE SPACE FOR ROW AND COLUMN WIDTHS

LCDELR = ISUMZ
ISUMZ = ISUMZ + NCOL
LCDELC = ISUMZ
ISUMZ = ISUMZ + NROW
RETURN

C
98 WRITE (OUNIT,992) IN

992 FORMAT (' BCFDAL: Error reading from unit: ',12)
STOP

99 WRITE (OUNIT,993) IN
993 FORMAT (' BCFDAL: Unexpected E-O-F on unit: ',12)

STOP
END

117

SUBROUTINE WELDAL (ISUMX,ISUMZ,MXWELL,IN,OUNIT,IWELCB,LCWELL)
C
C ALLOCATE SPACE FOR WELL PACKAGE
C

INTEGER OUNIT
C
Cl READ MAXIMUM NUMBER OF WELLS AND CELL-BY^CELL FLOW UNIT NUMBER

READ (IN,1,ERR=98,END=99) MXWELL,IWELCB
1 FORMAT (2110)

C
C2 ALLOCATE SPACE FOR THE WELL ARRAY

LCWELL = ISUMZ
ISUMZ = ISUMZ + (4 * MXWELL)
RETURN

C
98 WRITE (OUNIT,2) IN
2 FORMAT (' WELDAL: Error reading from unit: ',12)

STOP
99 WRITE (OUNIT,3) IN
3 FORMAT (' WELDAL: Unexpected E-O-F on unit: ',12)
STOP
END

SUBROUTINE DRNDAL (ISUMX,IN,OUNIT,IDRNCB)
C
C NO SPACE ALLOCATED FOR THE DRAIN PACKAGE
C

INTEGER OUNIT
C
Cl READ & IGNORE MXDRN, RETURN DRAIN CELL-BY-CELL FLOW UNIT NUMBER

READ (IN,1,ERR=98,END=99) MXDRN,IDRNCB
1 FORMAT (2I1O)
RETURN

C
98 WRITE (OUNIT,2) IN
2 FORMAT (' DRNDAL: Error reading from unit: ',12)

STOP
99 WRITE (OUNIT,3) IN
3 FORMAT (' DRNDAL: Unexpected E-O-F on unit: ',12)
STOP
END

118

SUBROUTINE RCHDAL (ISUMX,ISUMZ,NRCHOP,IN,OUNIT,IRCHCB,
1 NCOL,NROW,LCIRCH,LCRECH)

C
C ALLOCATE SPACE FOR RECHARGE PACKAGE
C

INTEGER OUNIT
C
Cl READ RECHARGE OPTION FLAG AND CELL-BY-CELL UNIT NUMBER

READ (IN,1,ERR=98,END=99) NRCHOP,IRCHCB
1 FORMAT (2I1O)

C
C2 CHECK RECHARGE OPTION FLAG

IF (NRCHOP .LT. 1 .OR. NRCHOP .GT. 3) THEN
WRITE (OUNIT,990) NRCHOP

990 FORMAT (' Illegal recharge option:',110,/,' ...stopping')
STOP

END IF
C
C3 ALLOCATE SPACE FOR RECHARGE INDEX ARRAY, IF NEEDED

LCIRCH = 1
IF (NRCHOP .EQ. 2) THEN

LCIRCH = ISUMZ
ISUMZ = ISUMZ + NCOL * NROW

END IF
C
C4 ALLOCATE SPACE FOR RECHARGE ARRAY

LCRECH = ISUMZ
ISUMZ = ISUMZ + NCOL * NROW
RETURN

C
98 WRITE (OUNIT,2) IN
2 FORMAT (' RCHDAL: Error reading from unit: ',12)

STOP
99 WRITE (OUNIT,3) IN
3 FORMAT (' RCHDAL: Unexpected E-O-F on unit: ',12)
STOP
END

SUBROUTINE EVTDAL (ISUMX,IN,OUNIT,IEVTCB)
C
C NO SPACE ALLOCATED FOR THE EVAPO-TRANSPIRATION PACKAGE
C

INTEGER OUNIT
C
Cl READ & IGNORE NEVTOP, RETURN EVT CELL-BY-CELL FLOW UNIT NUMBER

READ (IN,1,ERR=98,END=99) NEVTOP,IEVTCB
1 FORMAT (2110)
RETURN

C
98 WRITE (OUNIT,2) IN
2 FORMAT (' EVTDAL: Error reading from unit: ',12)
STOP

99 WRITE (OUNIT,3) IN
3 FORMAT (' EVTDAL: Unexpected E-O-F on unit: ',12)

STOP
END

119

SUBROUTINE RIVDAL (ISUMX,IN,OUNIT,IRIVCB)
C
C NO SPACE ALLOCATED FOR THE RIVER PACKAGE
C

INTEGER OUNIT
C
Cl READ & IGNORE MXRIVR, RETURN RIVER CELL-BY-CELL FLOW UNIT NUMBER

READ (IN,1,ERR=98,END=99) MXRIVR,IRIVCB
1 FORMAT (2I1O)
RETURN

C
98 WRITE (OUNIT,2) IN
2 FORMAT (' RIVDAL: Error reading from unit: ',12)
STOP

99 WRITE (OUNIT,3) IN
3 FORMAT (' RIVDAL: Unexpected E-O-F on unit: ',12)

STOP
END

SUBROUTINE GHBDAL (ISUMX,IN,OUNIT,IGHBCB)
C
C NO SPACE ALLOCATED FOR THE GENERAL HEAD BOUNDARY PACKAGE
C

INTEGER OUNIT
C
Cl READ & IGNORE MXBND, RETURN GHB CELL-BY-CELL FLOW FLAG

READ (IN,1,ERR=98,END=99) MXBND,IGHBCB
1 FORMAT (2110)
RETURN

C
98 WRITE (OUNIT,2) IN
2 FORMAT (' GHBDAL: Error reading from un it: ',12)
STOP

99 WRITE (OUNIT,3) IN
3 FORMAT (' GHBDAL: Unexpected E-O-F on unit: ',12)

STOP
END

SUBROUTINE SIPDAL (ISUMX,IN,OUNIT)
C
C NO SPACE ALLOCATED FOR THE STRONGLY IMPLICIT SOLVER PACKAGE
C

INTEGER OUNIT
C
Cl READ & IGNORE: MXITER AND NPARM

READ (IN,1,ERR=98,END=99) MXITER, NPARM
1 FORMAT (2110)
RETURN

C
98 WRITE (OUNIT,2) IN
2 FORMAT (' SIPDAL: Error reading from unit: ',12)

STOP
99 WRITE (OUNIT,3) IN
3 FORMAT (' SIPDAL: Unexpected E-O-F on unit: ',12)

STOP
END

12C

SUBROUTINE SORDAL (ISUMX,IN,OUNIT)
C
C NO SPACE ALLOCATED FOR THE SLICE-SUCCESSIVE OVER-RELAXATION SOLVER PACKAGE
C

INTEGER OUNIT
C
Cl -- READ & IGNORE. MXITER

READ (IN,1,ERR=98,END=99) MXITER
1 FORMAT (110).
RETURN

C
98 WRITE (OUNIT,2) IN
2 FORMAT (' SORDAL: Error reading from unit: ',12)
STOP

99 WRITE (OUNIT,3) IN
3 FORMAT (' SORDAL: Unexpected E-O-F on unit: ',12)

STOP
END

SUBROUTINE CTL1CK (ISUMX,ISUMZ,LENZ,NLAY,NODES,LCGRAF,LNGRAF,
1 OUNIT)

C
C CHECK COMPATIBILITY OF ARRAY SIZE(S) & ALLOCATE SPACE FOR VECTORS
C

INTEGER OUNIT
C
Cl CHECK FOR SUFFICIENT DYNAMIC STORAGE, IF LACKING THEN STOP

IF (ISUMZ .GT. LENZ) THEN
WRITE (OUNIT,1)
WRITE (OUNIT,2) ISUMZ,LENZ

1 FORMAT (//,' DYNAMIC STORAGE EXCEEDED')
2 FORMAT (/,I8,' ELEMENTS ALLOCATED',/,18, ' ELEMENTS AVAILABLE')

STOP
ELSE

WRITE (OUNIT,3)
3 FORMAT (//,' DYNAMIC STORAGE UTILIZATION')

WRITE (OUNIT,2) ISUMZ,LENZ
PAD = 100.O * FLOAT (ISUMZ) / FLOAT (LENZ)
WRITE (OUNIT,4) PAD

4 FORMAT (/,F8.1,'% UTILIZED')
C
C2 ALLOCATE SPACE FOR GRAPHIC STORAGE, IF LACKING THEN WARN

LCGRAF = ISUMZ
LNGRAF = LENZ - ISUMZ
LENEED = NODES * 4 / NLAY
IF (LNGRAF ,GT. LENEED) THEN

WRITE (OUNIT,7) LNGRAF
ELSE

LACKED = LENEED - LNGRAF
WRITE (OUNIT,8) LACKED

END IF
END IF
RETURN

7 FORMAT (/,I8,' elements available for graphic storage')
8 FORMAT (/, ' Insuff i c i ent space available for vector caIcuI at i on',
1 /,' Need ',19,' more elements of dynamic storage')
END

121

SUBROUTINE BASDRP (IBOUND,STRT,INBAS,NCOL,NROW,NLAY,
1 NODES,INOC,IHEDUN,IDDNUN,IOUT,NOPRT)

READ AND PREPARE BASIC MODEL PACKAGE

DIMENSION IBOUND (NODES) , STRT (NODES)
DIMENSION ANAME (6,2)
DATA (ANAME (1,1) ,1=1,6) /'

1 ' RRAY ' /
DATA (ANAME (I, 2) ,1=1,6) /'

1 ' HEAD ' /

BO 3 UNDA

'INIT

J RY A',

J IAL ' .

NCR = NCOL NROW

Cl READ THE MODEL BOUNDARY ARRAY
DO 100 K=1,NLAY
LOG = 1 + (K-l) * NCR
CALL U2DINT (IBOUND(LOG),ANAME(1,1),NROW,NCOL,K,INBAS,IOUT,NOPRT)

100 CONTINUE
C
C2 READ THE STARTING HEAD ARRAY AND SET NO+FLOW NODES TO FIXED HEAD

READ (INBAS,2) HNOFLO
2 FORMAT (F10.0)

C
DO 300 K=1,NLAY
LOG = 1 + (K-l) * NCR
CALL U2DREL (STRT(LOG),ANAME(1,2),NROW,NCOL,K,INBAS,IOUT,NOPRT)

300 CONTINUE
C

IF (NOPRT .GE. 0) WRITE (IOUT,3) HNOFLO
3 FORMAT (30X,'AQUIFER HEAD SET EQUAL TO ',1PG11.5,
1 ' AT ALL NO-FLOW NODES (IBOUND=O). 3)
DO 400 1=1,NODES
IF (IBOUND(I) .EQ. 0) STRT (I) = HNOFLO

400 CONTINUE
C
C3 -- SKIP COMPUTED HEAD & DRAWDOWN FORMATS,
C READ COMPUTED HEAD AND DRAWDOWN UNIT NUMBERS
C SBAS1I INCORPORATED HEREIN: READING OUTPUT CONTROL PACKAGE

IHEDUN = 0
IDDNUN = 0
IF (INOC .GT. 0) READ (INOC,501) IHEDFM,IDDNFM,IHEDUN,IDDNUN

501 FORMAT (4I1O)
IF (IHEDUN .NE. 0) THEN

IF (NOPRT .GE. 0) WRITE (IOUT,502) 3 Heads',IHEDUN
502 FORMAT (40X,A8,' available for reading on unit 3 ,13)

ELSE
IF (NOPRT .GE. 0) WRITE (IOUT,503) ' Heads 3

503 FORMAT (40X,A8,' unavailable for readying')
END IF
IF (IDDNUN .NE. 0) THEN

IF (NOPRT .GE. 0) WRITE (IOUT,502) 'Drawdown',IDDNUN
ELSE

IF (NOPRT .GE. 0) WRITE (IOUT,5O3) 'Drawdown 3
END IF
RETURN
END

122

SUBROUTINE BCFDRP (IBOUND,SCI,BOT,TOP,DELR,DELC,DELL,IN,ISS,
1 NCOL,NROW,NLAY,NODES,OUNIT,DUMMY,NOPRT)

READ AND PREPARE BLOCK-CENTERED FLOW DATA

AGE ',

ONG ' ,

ONG ',

HICK ' ,

BO',

>
i

AGE ' ,

ISOT',

> i

i
i

'COEF'/

' ROWS ' /

' ROWS ' /

' NESS ' /

'TTOM'/

' TOP'/

'COEF'/

'ROPY'/

' DELR ' /

' DELC ' /

INTEGER OUNIT
DIMENSION SCI(NODES),ANAME(6,1O) t BOT(NODES),TOP(NODES)
DIMENSION IBOUND(NODES),DUMMY(NODES)
DIMENSION DELR(NCOL),DELC(NROW),DELL(NLAY)

SINSERT FLWCOM.INS
C

DATA (ANAME(1,1),1=1,6)
1 /' ','PRIM','ARY ','STOR'

DATA (ANAME(I,2),1=1,6)
1 /' ','TRAN','SMIS','. AL'

DATA (ANAME(I,3),1=1,6)
1 /' H','YD. ' ,'COND',' . AL'

DATA (ANAME(I,4),1=1,6)
1 /'VERT',' HYD',' CON','D /T'

DATA (ANAME(I,5),1=1,6)
1 / > >> >> >> >

DATA (ANAME(I,6),1=1,6)
i / > >> >> >> >

DATA (ANAME(I,7),1=1,6)
1 /' SE','COND','ARY ','STOR'

DATA (ANAME(I,8),1=1,6)
1 /'COLU','MN T','0 RO','W AN'

DATA (ANAME(I,9),1=1,6)
]_ / > > > > > > > >

DATA (ANAME(I,10),1=1,6)
i /' >> >> >> >
* / i i i

C
Cl READ AND IGNORE: TRPY

CALL U1DREL (DUMMY,ANAME(1,8),NLAY,IN,OUNIT,NOPRT)
C
C2 READ WIDTH OF ROWS AND COLUMNS, DEFINE DEFAULT LAYER THICKNESS

CALL U1DREL (DELR,ANAME(1,9),NCOL,IN,OUNIT,NOPRT)
CALL U1DREL (DELC,ANAME(1,10),NROW,IN,OUNIT,NOPRT)
THICK =0.0
DO 50 1=1,NROW

50 THICK = THICK + DELC(I)
DO 60 1=1,NCOL

60 THICK = THICK + DELR(I)
THICK = THICK / (NCOL + NROW)
DO 70 1=1,NLAY

70 DELL(I) = THICK
WRITE (OUNIT,!) THICK

1 FORMAT (54X,'DEFAULT LAYER THICKNESS =',G15.7)
C
C3 READ STORAGE COEFFICIENT

NIJ = NCOL * NROW
KT = O
KB = O

C
DO 200 K=1,NLAY

IF (LAYCON(K) .EQ. 1 .OR. LAYCON(K)
IF (LAYCON(K) .EQ. 2 .OR. LAYCON(K)
LOG = 1 + (K-l) * NIJ
LOCB = 1 + (KB-1) * NIJ
LOCT = 1 + (KT-1) * NIJ

C
IF (ISS .EQ. O)

1 CALL U2DREL (SCI(LOC),ANAME(1,1),NROW,NCOL,K,IN,OUNIT, NOPRT)

EQ. 3) KB = KB + 1
EQ. 3) KT = KT + 1

123

IF (LAYCON(K) .EQ. O .OR. LAYCON(K) .EQ. 2) THEN
CALL U2DREL (DUMMY,ANAME(1,2),NROW,NCOL,K,IN,OUNIT,NOPRT)

ELSE
CALL U2DREL (DUMMY,ANAME(1,3),NROW,NCOL,K,IN,OUNIT,NOPRT)
CALL U2DREL (BOT(LOCB),ANAME(1,5),NROW,NCOL,K,IN,OUNIT,NOPRT)

ENDIF
C

IF (K .NE. NLAY)
1 CALL U2DREL (DUMMY,ANAME(1,4) u NROW,NCOL,K,IN,OUNIT,NOPRT)

IF (LAYCON(K) .EQ. 2 .OR. LAYCON(K) .EQ. 3) THEN
IF (ISS .EQ. 0)

1 CALL U2DREL (DUMMY,ANAME(1,7),NROW,NCOL,K,IN,OUNIT,NOPRT)
CALL U2DREL (TOP(LOCT),ANAME(1,6),NROW,NCOL,K,IN,OUNIT,NOPRT)

ENDIF
200 CONTINUE

C
C NO NEED TO CALL SBCF1N

RETURN
END

SUBROUTINE SIPDRP (IN,OUNIT)
C
C READ & IGNORE SIP PACKAGE INPUT
C

INTEGER OUNIT
C
Cl READ AND IGNORE: ACCL,HCLOSE,IPCALC,WSEED,IPRSIP

READ (IN,1,ERR=98,END=99) ACCL,HCLOSE,IPCALC,WSEED,IPRSIP
1 FORMAT (2F10.0,110,F10.0,110)
RETURN

C
98 WRITE (OUNIT,2) IN
2 FORMAT (' SIPDRP: Error reading from unit. ',12)

STOP
99 WRITE (OUNIT,3) IN
3 FORMAT (' SIPDRP: Unexpected E-O-F

STOP
END

on unit: ',12)

SUBROUTINE SORDRP (IN,OUNIT)
C
C READ AND IGNORE SOR PACKAGE INPUT
C

INTEGER OUNIT
C
Cl READ AND IGNORE: ACCL, HCLOSE, IPRSO.R

READ (IN,1,ERR=98,END=99) ACCL,HCLOSE,IPRSOR
1 FORMAT (2F10.0,110)
RETURN

C
98 WRITE (OUNIT,2) IN
2 FORMAT (' SORDRP. Error reading from unit: ',12)

STOP
99 WRITE (OUNIT,3) IN
3 FORMAT (' SORDRP: Unexpected E-O-F on unit: ',12)

STOP i
END

124

SUBROUTINE BASDST (INBAS,NPER,NTS,KSP,KTS,NLAY,IOFLG,OUNIT)
C
C ROUTINE TO FAST-FORWARD PAST READ OF: PERLEN & TSMULT
C AND SAVE NUMBER OF TIME-STEPS/STRESS PERIOD INTO NTS
C NOTE: THIS IS CALLED ONLY ONCE UNLIKE IN THE MODULAR MODEL
C

INTEGER OUNIT, NTS (NPER), IOFLG (NLAY,2)
C
Cl READ NUMBER OF TIME-STEPS / STRESS PERIOD INTO ARRAY: NTS

KSP = 1
KTS = O
DO 10 1=1,NPER

READ (INBAS,1,ERR=98,END=99) PERLEN,NTS(I),TSMULT
10 CONTINUE
1 FORMAT (F10.0,I10,F10.0)

C
C2 INITIALIZE IOFLG ARRAY TO ZERO FOR ALL LAYERS

DO 20 1=1,NLAY
IOFLG (1,1) =0
IOFLG (1,2) =0

20 CONTINUE
RETURN

C
98 WRITE (OUNIT,2) IN
2 FORMAT (' BASDST: Error reading from unit: ',12)

STOP
99 WRITE (OUNIT,3) IN
3 FORMAT (' BASDST: Unexpected E-O-F on unit: ',12)

STOP
END

SUBROUTINE WELDRP (NROW,NCOL,NLAY,WELL,NWELLS,MXWELL,IN,IWELSP,
1 OUNIT,IWLFLG,NOPRT)

C
C READ WELL PACKAGE INPUT: NWELLS,WELL
C

INTEGER OUNIT
DIMENSION WELL(4,MXWELL)
LOGICAL ABORT, IWLFLG

C
Cl -- INCREMENT WELL STRESS PERIOD, READ WELL FLAG/NUMBER OF WELLS

IWELSP = IWELSP + 1
READ (IN,8,ERR=98,END=99) ITMP

8 FORMAT (110)
C
C2 IF ITMP < 0 & NOT 1ST STRESS PERIOD, REUSE WELLS FROM LAST STRESS PERIOD

IF (ITMP .LT. O) THEN
IF (IWLFLG) THEN

WRITE (OUNIT,!)
1 FORMAT (' WELLS must be read for the first stress period')

STOP
END IF
IF (NOPRT .GE. 0) WRITE (OUNIT,6)

6 FORMAT (10X,'Reusing WELLS from last stress period')
RETURN

ENDIF
C
C3 CHECK THAT NUMBER OF WELLS DOES NOT EXCEED MAXIMUM NUMBER OF WELLS

NWELLS = ITMP
IF (NWELLS .GT. MXWELL) THEN

WRITE (OUNIT,11) NWELLS,MXWELL
11 FORMAT (' NWELLS(',I4,') is greater than MXWELL(',14,')')

STOP
ENDIF

125

C4 PRINT NUMBER OF WELLS, IF NONE THEN RETURN
IF (NOPRT .GE. O) WRITE (OUNIT,2) NWELLS

2 FORMAT (///,50X,I5,' WELLS FOR CURRENT STRESS PERIOD')
IF (NWELLS .EQ. 0) RETURN

C
C5 -- READ & PRINT WELL LOCATIONS & PUMPA3ES, CHECK FOR OUT-OF-BOUNDS

IF (NOPRT .GE. O) WRITE (OUNIT,3)
3 FORMAT (48X,'LAYER ROW COL
1 48X,45('-'))
ABORT = .FALSE.
DO 250 I1=1,NWELLS

4

5

f

10

READ (IN,4,ERR=98,END=99) K,I,J,
FORMAT (3I10,F10.0)
IF (NOPRT .GE. O) WRITE (OUNIT,5) K,I ; J,Q,II
FORMAT (48X,I3,I8,I7,G16.5,I8)
IF (K .LE. O .OR. K .GT. NLAY .OR.

I .LE. O .OR. I .GT. NROW .OR
J .LE. O .OR. J .GT. NCOL) THEN

WRITE (OUNIT,10)
FORMAT (48X,' Preceding WELL

STRESS RATE WELL NO.',/,

is outside model I imits')
ABORT = .TRUE.

END IF
WELL (1,11) = K
WELL (2,11) = I
WELL (3,11) = J
WELL (4,11) = Q

25O CONTINUE
IF (ABORT) STOP
RETURN

98 WRITE (OUNIT,998) IN
998 FORMAT (' WELDRP: Error reading from unit: ',12)

STOP
99 WRITE (OUNIT,999) IN

999 FORMAT (' WELDRP: Unexpected E-0-F: on unit: ',12)
STOP
END

SUBROUTINE DRNDRP (IN,OUNIT)

READ & IGNORE DRAIN PACKAGE INPUT: K,I,J,DRAI

INTEGER OUNIT

READ (IN,8,ERR=98,END=99) ITMP |
8 FORMAT (110)

IF (ITMP .LE. O) RETURN

DO 250 1=1,ITMP
READ (IN,4,ERR=98,END=99) IPAD1,IPAD2,IPAD3,PADl,PAD2

4 FORMAT (3I1O,2F1O.O)
25O CONTINUE

RETURN

98 WRITE (OUNIT,2) IN
2 FORMAT (' DRNDRP: Error reading from unit: ',12)

STOP
99 WRITE (OUNIT,3) IN
3 FORMAT (' DRNDRP: Unexpected E-O-F on unit: ',12)

STOP
END

:L26

SUBROUTINE RCHDRP (NRCHOP,IRCH,RECH,NROW,NCOL,NLAY,IN,IRCHSP,
1 OUNIT,IRCFLG,NOPRT)

C
C READ RECHARGE PACKAGE INPUT: INRECH,INIRCH,RECH,IRCH
C

INTEGER OUNIT
DIMENSION IRCH(NCOL,NROW),RECH(NCOL,NROW),ANAME(6,2)
LOGICAL IRCFLG, ABORT

C
DATA (ANAME(1,1),1=1,6)

1 /' ', 'RECH 1 , »ARGE', ' LAY','ER 1','NDEX'/
DATA (ANAME(I,2),1=1,6)

1 /' ',' ',' ',' ','RECH','ARGE'/
C
Cl INCREMENT THE RECHARGE STRESS PERIOD AND READ RECHARGE INPUT FLAGS

IRCHSP = IRCHSP + 1
READ (IN,4,ERR=98,END=99) INRECH,INIRCH

4 FORMAT (2110)
C
C2 ~ READ RECHARGE ARRAY IF READ FLAG IS SET

IF (INRECH .LT. O) THEN
IF (IRCFLG) THEN

WRITE (OUNIT,1)
1 FORMAT (' IRCH must be read for 1st stress period')

STOP
END IF
IF (NOPRT .GE. O) WRITE (OUNIT,3)

3 FORMAT (' Reusing recharge rates from last stress period')
ELSE

CALL U2DREL (RECH,ANAME(1,2),NROW,NCOL,0,IN,OUNIT,NOPRT)
END IF

C
C3 IF RECHARGE IS TO TOP LAYER, THEN RETURN

IF (NRCHOP .NE. 2) RETURN
C
C4 READ RECHARGE INDICATOR ARRAY & CHECK BOUNDS OF EACH ELEMENT

IF (INIRCH .GE. 0) THEN
CALL U2DINT (IRCH,ANAME(1,1),NROW,NCOL,0,IN,OUNIT,NOPRT)
ABORT = .FALSE.
DO 1O 1=1,NROW
DO 10 J=1,NCOL

IF (IRCH (J,I) .GT. NLAY .OR. IRCH (J,I) .LE. 0) THEN
WRITE (OUNIT,5) I,J,IRCH(J,I)

5 FORMAT (' At row',13,' coIumn',13,13,' is an illegal',
1 ' Iayer i ndex ')

ABORT = .TRUE.
ENDIF

10 CONTINUE
IF (ABORT) STOP

ELSE
IF (NOPRT .GE. O) WRITE (OUNIT,2)

2 FORMAT (' Reusing rech layer index from last stress period')
ENDIF
RETURN

C
98 WRITE (OUNIT,6) IN
6 FORMAT (' RCHDRP: Error reading from unit: ',12)
STOP

99 WRITE (OUNIT,7) IN
7 FORMAT (' RCHDRP: Unexpected E-O-F on unit: ',12)
STOP
END

127

SUBROUTINE EVTDRP (NCOL,NROW,IN,OUNIT,DUMMY,NOPRT)

READ & IGNORE EVT PACKAGE INPUT: INSURF,INEVTR,INEXDP,INIEVT
SURF,EVTR,EXDP,IEVT

INTEGER OUNIT
DIMENSION DUMMY(NCOL,NROW), ANAME(6,4)

DATA (ANAME (1,1),1=1,6)
1 /' ',' ',' ET',' LAY','ER I','NDEX'/

DATA (ANAME (I,2),1=1,6)
1 /' ' , ' ' , ' ' , ' ET',' SUR','FACE'/

DATA (ANAME (I,3),1=1,6)
1 /' EVA','POTR','ANSP','IRAT','ION ','RATE'/

DATA (ANAME (I,4),1=1,6)
I/' ',' ','EXTI','NCTI','ON D','EPTH'/

READ (IN,6,ERR=98,END=99) INSURF,INEVTR,INEXDP,INIEVT
6 FORMAT (4I1O)

IF (INSURF .GE. O)
1 CALL U2DREL (DUMMY,ANAME(1,2),NROW,NCOL,O,IN,OUNIT,NOPRT)

IF (INEVTR .GE. O)
1 CALL U2DREL (DUMMY,ANAME(1,3),NROW,NCOL,O,IN,OUNIT,NOPRT)

IF (INEXDP .GE. O)
1 CALL U2DREL (DUMMY,ANAME(1,4),NROW,NCOL,O,IN,OUNIT,NOPRT)

IF (NEVTOP . EQ. 2 .AND. INIEVT .GE. O)
1 CALL U2DREL (DUMMY,ANAME(1,1),NROW,NCOL,O,IN,OUNIT,NOPRT)

RETURN

98 WRITE (OUNIT,2) IN
2 FORMAT (' EVTDRP: Error reading from unit: ',12)

STOP
99 WRITE (OUNIT,3) IN
3 FORMAT (J EVTDRP: Unexpected E-0-

STOP
END

F on unit: ',12)

SUBROUTINE RIVDRP (IN,OUNIT)
C
C READ &. IGNORE RIVER PACKAGE INPUT: K,I,J,RIVR
C

INTEGER OUNIT
Cl READ RIVER-READ-FLAG / NUMBER OF REACHES

READ (IN,8,ERR=98,END=99) ITMP
8 FORMAT (HO)

C
C2 IF NOT REUSING RIVERS, THEN WE MUST READ THEM

IF (ITMP .LE. O) RETURN
DO 250 1=1,ITMP
READ (IN,4,ERR=98,END=99) IPAD1,IPAD2,IPAD3,PAD1,PAD2,PAD3

4 FORMAT (3I1O,3F10.0)
250 CONTINUE

RETURN
C

98 WRITE (OUNIT,2) IN
2 FORMAT (' RIVDRP: Error reading from unit: ',12)

STOP
99 WRITE (OUNIT,3) IN
3 FORMAT (' RIVDRP: Unexpected E-O-F on unit: ',12)

STOP
END

SUBROUTINE GHBDRP (IN,OUNIT)
C
C READ & IGNORE GHB PACKAGE INPUT: K,I,J,BNDS
C

INTEGER OUNIT
C

READ (IN,8,ERR=98,END=99) ITMP
8 FORMAT (HO)

C
IF (ITMP .LE. O) RETURN

C
DO 250 1=1,ITMP
READ (IN,4,ERR=98,END=99) IPAD1,IPAD2,IPAD3,PAD1,PAD2

4 FORMAT (3I1O,2F1O.O)
25O CONTINUE

RETURN
C

98 WRITE (OUNIT,2) IN
2 FORMAT (' GHBDRP: Error reading from unit: ',12)

STOP
99 WRITE (OUNIT,3) IN
3 FORMAT (' GHBDRP: Unexpected E-O-F on unit: ',12)

STOP
END

129

SUBROUTINE CTL1CM (LINE,NROW,NCOL,NLAY,INCTL,OUNIT,EXCMD,EOF,UBIN,
1 U2DDSN,U3DDSN,U2DANM,U3DANM,ISKSF*,ISKTS,LCSTRT,LCIBOU,LCSC1,
2 LCTOP , LCIOFG,LCBOT,LCDELR,LCDELC/LCWELL,NWELLS,MXWELL,NRCHOP,
3 LCIRCH,LCRECH,LCU2DS,LCU3DS,LCWDS,IUNIT,NUCLAS,CLASES,TITLES,
4 IBOUND,UBOUND,DS1,DS2,STKA2D,STKA3D,NPER,NTS,KSP,KTS,IOFLG,
5 LCUBOU , LCDELL,DELR,DELC,DELL,LCGRAF,LNGRAF,IBCFCB,IWELCB,IDRNCB,
6 IRCHCB,IEVTCB,IRIVCB,IGHBCB,IHEDUN,IDDNUN,IPKGSP,PLANE,NOPRT)

C
C PROCESS A SINGLE COMMAND
c !

DOUBLE PRECISION TEXTEX, DS1, DS2, STKA2D, STKA3D
DIMENSION DS1(NCOL*NROW*NLAY),DS2(NCOL*NROW*NLAY),CLASES(2O)
DIMENSION STKA2D(NCOL,NROW),STKA3D(NCOL,NROW,NLAY)
DIMENSION PLANE (4), DELL (NLAY)
INTEGER IBOUND(NCOL,NROW,NLAY),UBOUND(NCOL,NROW,NLAY),IPKGSP(12)

SINSERT STKSIZE.INS
SINSERT STKDEF.INS
SINSERT TINY.INS

INTEGER IUNIT(24),OUNIT,LCWDS(2),IOFLG(NLAY,2),NTS(NPER)
INTEGER COORD (3,3)
LOGICAL EXCMD,EOF , UBIN
CHARACTER TITLES(4)*128,CULAY*2,CMASK*6,OPRATR*2,DSN3*6,ANAME3*24
CHARACTER DSN*6,DSN1*6,DSN2*6,LINE^SO,ANAMEl*24,ANAME2*24,CMD*4
CHARACTER DSTYPE*3,ORIENT*5,MISSTR43O
EXTERNAL UTRMUP
CHARACTER UTRMUP*6

C
Cl READ A LINE FROM THE COMMAND FILE

READ (INCTL / 9001 / ERR=998,END=10000) LINE
90O1 FORMAT (A80)

C
C2 ENTRY POINT FOR DEFAULT PROCESSING

ENTRY DFLTEN (LINE,NROW,NCOL,NLAY,INCTL,OUNIT,EXCMD,EOF,UBIN,
1 U2DDSN, U3DDSN, U2DANM, U3DANM, ISKSl|>, ISKTS, LCSTRT, LCIBOU, LCSC1,
2 LCTOP,LCIOFG,LCBOT,LCDELR,LCDELC LCWELL,NWELLS,MXWELL,NRCHOP,
3 LCIRCH,LCRECH,LCU2DS,LCU3DS,LCWDS,IUNIT,NUCLAS,CLASES,TITLES,
4 IBOUND,UBOUND,DSl,DS2,STKA2D,STKA3D,NPER,NTS,KSP,KTS,IOFLG,
5 LCUBOU,LCDELL,DELR,DELC,DELL,LCGRAF,LNGRAF,IBCFCB,IWELCB,IDRNCB,
6 IRCHCB,IEVTCB,IRIVCB,IGHBCB,lHED(jN,IDDNUN,IPKGSP,PLANE,NOPRT)

C
C3 DEFINE VARIABLES APPLICABLE TO ALL COMMANDS

EXCMD = .TRUE.
NCR = NCOL * NROW
NCRL = NCOL * NROW * NLAY
CMD = UTRMUP (LINE(1:6),4)
IF (CMD .NE. 'TITL' .AND. CMD .NE. '****')

1 WRITE (OUNIT,9002) (TITLES(I),1=1,4), LINE
9002 FORMAT (1H1,A128,/,2(IX,A128,/),/,IX,A128,//,' Processing:

1 A80,//)
C
C4 BRANCH TO APPROPRIATE COMMAND PROCESSOR
C
C4A 'STATISTICS COMMAND

IF (CMD .EQ. 'STAT') THEN
C4A1 GET COMMAND ARGUMENTS: DATA SET NAME, LAYER, & MASKS

DSN = UTRMUP (LINE(6:11),6)
CULAY = LINE (13:14)
CMASK = LINE (16:21) j
READ (CULAY,9OO3,ERR=996) IULAY1

9003 FORMAT (12)
READ (CMASK,9OO4,ERR=997) I2MASK,IBMASK,IUMASK

9004 FORMAT (312)
MASKUM = lABS(IZMASK) + IABS(IBMASK) + IABS(IUMASK)

iso

c
C4A2 GET THE REQUESTED DATA ARRAY

CALL ULC1DS (NROW,NCOL,NLAY,DSN,IUNIT,OUNIT,IULAY1,DS1,LCDS1
1 LENDS,ANAME1,EXCMD,U2DDSN,U3DDSN,LCU2DS,LCU3DS,U2DANM ,
2 LCRECH,LCIRCH,LCDELC,LCDELR,NRCHOP,LCWELL,MXWELL,NWELLS ,
3 U3DANM,LCIBOU,LCSTRT,LCSC1,LCBOT,LCTOP,LCIOFG,.TRUE.,
4 IPKGSP,ISKSP,ISKTS,ISP1,ITS1 , NPER,NTS)

IF (.NOT. EXCMD) GOTO 999
C
C4A3 PRINT HEADINGS

CALL SCTL1H (CMD,DSN,DSN2,DSN2,ANAMEl,ANAME2,ANAME2,IULAY1,
1 IULAY2,ISP1,ISP1,ITS1 , ITS1,' ',OUNIT)

C
C4A4 LOAD NODE POINTERS INTO DS2

CALL STA1SL (DS2,NLAY,NCR,NCRL,DSN,IOFLG)
C
C4A5 IF REQUESTED, MASK THE DATA ARRAY

IF (MASKUM .GT. O) CALL MAS1EX (LENDS,NCRL,DSl,IULAY1,NLAY,
1 DS2,EXCMD,UBIN,LCDS1,IBMASK,IZMASK,IUMASK,OUNIT,DSN , IBOUND,
2 UBOUND)

IF (.NOT. EXCMD) GOTO 999
C
C4A6 CALCULATE AND PRINT DESCRIPTIVE STATISTICS

LCDS2 = LCDS1 / 2
IF (MOD (LCDS1,2) .NE. 0) LCDS2 = LCDS2 + 1
IJUMP = 1
IF (MASKUM .EQ. O .AND. MOD (IULAY1,2) .EQ. O .AND.

1 IULAY1 .GT. 1 .AND. MOD (NCR ,2) .EQ. 1) IJUMP = 2
CALL STA1EX (NCOL,NROW,NLAY,LENDS,DSl(LCDS1),DS2(LCDS2),

1 IJUMP,OUNIT,EXCMD)
IF (.NOT. EXCMD) GOTO 999

C
C4B 'HIST'OGRAM COMMAND

ELSEIF (CMD .EQ. 'HIST') THEN
C4B1 GET COMMAND ARGUMENTS: DSN, LAYER, MASK, CLASSES

DSN = UTRMUP (LINE(6:11),6)
CULAY = LINE (13:14)
CMASK = LINE (16:21)
READ (CULAY,9003,ERR=996) IULAY1
READ (CMASK,9004,ERR=997) IZMASK,IBMASK,IUMASK
MASKUM = IABS(IZMASK) + IABS(IBMASK) + IABS(IUMASK)
READ (LINE,9007,ERR=995) IUCLAS

9007 FORMAT (22X,13)
C
C4B2 GET THE REQUESTED DATA ARRAY

CALL ULC1DS (NROW,NCOL,NLAY,DSN,IUNIT,OUNIT,IULAY1,DSl,LCDS1
1 LENDS,ANAMEl,EXCMD,U2DDSN,U3DDSN,LCU2DS,LCU3DS,U2DANM,
2 LCRECH,LCIRCH,LCDELC,LCDELR,NRCHOP,LCWELL,MXWELL,NWELLS,
3 U3DANM,LCIBOU,LCSTRT,LCSCl y LCBOT,LCTOP,LCIOFG,.TRUE.,
4 IPKGSP,ISKSP,ISKTS,ISP1,ITS1,NPER,NTS)

IF (.NOT. EXCMD) GOTO 999
C
C4B3 PRINT HEADINGS

CALL SCTL1H (CMD,DSN,DSN2,DSN2,ANAMEl,ANAME2,ANAME2,IULAY1,
1 IULAY2,ISP1,ISP1,ITS1,ITS1,' ',OUNIT)

C
C4B4 IF REQUESTED, MASK THE DATA ARRAY

IF (MASKUM .GT. O) CALLMAS1EX (LENDS,NCRL,DSl,IULAY1,NLAY,
1 DS2,EXCMD,UBIN,LCDS1,IBMASK,IZMASK,IUMASK,OUNIT,DSN,IBOUND,
2 UBOUND)

IF (.NOT. EXCMD) GOTO 999

131

c
C4B5 CALCULATE AND PRINT FREQUENCY ANALYSIS

CALL HIS1EX (DSI(LCDSl), DS2,LENDS,NUCLAS,CLASES,IUCLAS,OUNIT,
1 EXCMD)

IF (.NOT. EXCMD) GOTO 999
CALL SCTL1H (CMD,DSN,DSN2,DSN2,ANAMEl , ANAME2,ANAME2,IULAY1 ,

1 IULAY2,ISPl,ISPl,ITSl,ITSl,' ',OUNIT)
C
C4C 'COMPARISON COMMAND

ELSEIF (CMD . EQ . 'COMP') THEN {
C4C1 GET COMMAND ARGUEMENTS: DSN1, LAYERl, MASK, OPERATOR,
C DSN2, LAJTER2, LIMIT

DSN = UTRMUP (LINE(6:11),6)
DSN1 = DSN
CULAY = LINE (13:14)
CMASK = LINE (29:34)
READ (CULAY,9003,ERR=996) lULAYl
READ (CMASK , 90O4 , ERR=997) IZMASKi, I8MASK , IUMASK
OPRATR = UTRMUP (LINE(16:21),2)
DSN = UTRMUP (LINE (19:24),6)
DSN2 = DSN
CULAY = LINE (26:27)
READ (CULAY,9003) IULAY2
READ (LINE(36:39),9O20,ERR=894) LIMIT
FORMAT (14)9O2O

C
C4C2 GET THE DATA ARRAY REQUESTED FOR DSN1

CALL ULC1DS (NROW,NCOL,NLAY,DSN1,IUNIT,OUNIT,IULAY1,DSI,LCDSl,
1 LENDS1,ANAMEl,EXCMD,U2DDSN,U3DDSN,LCU2DS,LCU3DS,U2DANM,
2 LCRECH,LCIRCH,LCDELC,LCDELR,NRCHOP,LCWELL,MXWELL,NWELLS,
3 U3DANM,LCIBOU,LCSTRT,LCSCI,LCBOT,LCTOP,LCIOFG,.TRUE.,
4 IPKGSP,ISKSP,ISKTS,ISPl,ITSl,NPER,NTS)

IF (.NOT. EXCMD) GOTO 999
IF ((DSN1 .EQ. 'HEAD' .OR. DSN1

1 DSNl .EQ. 'TOP' .OR. DSN1 .EQ.
2 LENDS1 = NCRL

C
C4C3 -- GET THE DATA ARRAY REQUESTED FOR

C
C4C4

C
C4C5

EQ. 'DRAWDN'
'BOT') .AND.

.OR.
IULAY1 EQ. 0)

DSN2
CALL ULC1DS (NROW,NCOL,NLAY,DSN2,IUNIT,OUNIT,IULAY2,DS2,LCDS2,

1 LENDS2,ANAME2,EXCMD,U2DDSN,U3DDSN,LCU2DS,LCU3DS,U2DANM,
2 LCRECH,LCIRCH,LCDELC,LCDELR,NRCHOP,LCWELL,MXWELL,NWELLS,
3 U3DANM,LCIBOU,LCSTRT,LCSCI,LCBOT,LCTOP,LCIOFG,.FALSE.,
4 IPKGSP,ISKSP,ISKTS,ISP2,ITS2,NPER,NTS)

IF (.NOT. EXCMD) GOTO 999
IF ((DSN2 .EQ. 'HEAD' .OR. DSN2 .EQ. 'DRAWDN' .OR.

1 DSN2 .EQ. 'TOP' .OR. DSN2 .EQ. 'BOT') .AND. IULAY2 .EQ. 0)
2 LENDS2 = NCRL

 PRINT HEADINGS
CALL SCTL1H (CMD,DSNl,DSN2,DSN3,ANAMEl,ANAME2,ANAME3,IULAY1,

1 IULAY2,ISPl , ISP2,ITSl,ITS2,OPRATR,OUNIT)

 CHECK IF NODE-BY-NODE COMPARISON IS POSSIBLE
IF (LENDS1 .NE. LENDS2) THEN

EXCMD = .FALSE.
WRITE (OUNIT,5) DSNl,LENDS1,DSN2,LENDS2

ii FORMAT (/,' Unable to compare, data sets not same size',/,
1 ' Length of ' , A6, ' = ' , 19 , / ,i ' Length of ',A6,' = ',19)

GOTO 999 I
END IF

132

c
C4C6

C
C4D

C4D1
C

-- PERFORM THE COMPARISON
CALL COM1EX (EXCMD,NCOL,NROW,NLAY,LENDSl,OUNIT,DSNl,DSl,IULAY1,

1 DSN2,DS2,IULAY2,OPRATR,IBOUND , UBOUND,IZMASK,IBMASK , IUMASK ,
2 UBIN,IOFLG,LIMIT)

IF (.NOT. EXCMD) GOTO 999

-- 'MATH'EMATICS COMMAND
ELSEIF (CMD .EQ. 'MATH') THEN
 GET THE COMMAND ARGUMENTS: DSN1, LAYER1, OPERATOR, DSN2, LAYER2.

C
C4D2

C
C4D3

C
C4D4

C
C4D5

DSN3, ARRAY-NAME
DSN = UTRMUP (LINE(6:11),6)
DSN1 = DSN
CULAY = LINE (13:14)
READ (CULAY,9003,ERR=996) IULAY1
OPRATR = UTRMUP (LINE(16:21),2)
DSN = UTRMUP (LINE (19.24),6)
DSN2 = DSN
CULAY = LINE (26:27)
READ (CULAY,9003) IULAY2
DSN3 = UTRMUP (LINE (29:34),6)
ANAME3 = LINE (36:59)

GET THE DATA ARRAY REQUESTED FOR DSN1
CALL ULC1DS (NROW,NCOL,NLAY,DSN1,IUNIT,OUNIT,IULAY1,DSl,LCDS1,
LENDSl,ANAME1,EXCMD,U2DDSN,U3DDSN,LCU2DS,LCU3DS,U2DANM,
LCRECH,LCIRCH,LCDELC,LCDELR,NRCHOP,LCWELL,MXWELL,NWELLS,
U3DANM,LCIBOU,LCSTRT,LCSC1,LCBOT,LCTOP,LCIOFG,.TRUE.,
IPKGSP,ISKSP,ISKTS,ISP1,ITS1,NPER,NTS)

IF (.NOT. EXCMD) GOTO 999
IF ((DSN1 .EQ. 'HEAD' .OR. DSNl .EQ. 'DRAWDN' .OR.
DSN1 .EQ. 'TOP' .OR. DSNl .EQ. 'BOT') .AND. IULAY1 .EQ O)
LENDSl = NCRL

GET THE DATA ARRAY REQUESTED FOR DSN2
IF (OPRATR .NE. 'AB' .AND OPRATR .NE. '||')
CALL ULC1DS (NROW,NCOL,NLAY,DSN2,IUNIT,OUNIT,IULAY2,DS2,LCDS2,
LENDS2,ANAME2,EXCMD,U2DDSN,U3DDSN,LCU2DS,LCU3DS,U2DANM,
LCRECH,LCIRCH,LCDELC,LCDELR,NRCHOP,LCWELL,MXWELL,NWELLS,
U3DANM,LCIBOU,LCSTRT,LCSC1,LCBOT,LCTOP,LCIOFG,.FALSE.,
IPKGSP,ISKSP,ISKTS,ISP2,ITS2,NPER,NTS)

IF (.NOT. EXCMD) GOTO 999
IF ((DSN2 .EQ. 'HEAD' .OR. DSN2 .EQ. 'DRAWDN' .OR.
DSN2 .EQ. 'TOP' .OR. DSN2 .EQ. 'BOT') .AND. IULAY2 .EQ. 0)
LENDS2 = NCRL

 CHECK IF THE REQUESTED COMPUTATION IS POSSIBLE
IF (LENDSl .NE. LENDS2 .AND.

1 OPRATR .NE. '||' .AND. OPRATR .NE. 'AB') THEN
EXCMD = .FALSE.
WRITE (OUNIT,6) DSNl,LENDSl,DSN2,LENDS2

> FORMAT (/,' Unable to compute, data sets not same size',/,
1 ' Length of ',A6,' = ',I9,/,' Length of ',A6,' = ',19)

GOTO 999
END IF

 IF POSSIBLE, ASSIGN STRESS PERIOD AND TIME STEP TO THE CALCULATED ARRAY
IF (ISP1 .EQ. ISP2 .AND. ITS1 .EQ. ITS2) THEN

ISP3 = ISP1
ITS3 = ITS1

ELSE
ISP3 = 0
ITS3 = 0

END IF

133

c
C4D6

C
C4D7

PRINT HEADINGS
CALL SCTL1H (CMD, DSNl , DSN2, DSN3 , ANAMEl , ANAME2, ANAME3, IULAY1 ,
IULAY2 , ISP1 , ISP2 , ITS1 , ITS2 , OPRATR , OUNIT)

CALCULATE A TWO-DIMENSIONAL DATA ARRAY
IF (LENDS1 . EQ. NCR) THEN

C4D7A PERFORM THE CALCULATION
CALL MTH1EX (NCOL, NROW, NLAY , DSNl , DSN2, IULAY1 , IULAY2,

1 LCDSl , LCDS2 , DSI , DS2 , STKA2D , IOFLG , OPRATR , OUNIT , LENDS1 ,
2 EXCMD)

IF (. NOT . EXCMD) GOTO 999
C
C4D7B ALTER THE STACK DESCRIPTORS

CALL UBUBLE (LCU2DS , U2DDSN , U2DANM , ISKSP , ISKTS , CMD ,
1 . FALSE . , OUNIT , DSN3 , ANAME3 , ISP3 , ITS3)

C4D8 CALCULATE A THREE-DIMENSIONAL DATJA ARRAY
ELSEIF (LENDS1 . EQ . NCRL) THEN '

C
C4D8A PERFORM THE CALCULATION

CALL MTH1EX (NCOL, NROW, NLAY, DSNl , DSN2 , IULAY1 , IULAY2,
1 LCDSl , LCDS2 , DSI , DS2 , STKA3D , IOFLG , OPRATR , OUNIT, LENDS1 ,
2 EXCMD)

IF (.NOT. EXCMD) GOTO 999
C
C4D8B ALTER THE STACK DESCRIPTORS

CALL UBUBLE (LCU3DS , U3DDSN , U3DANM , ISKSP , ISKTS , CMD ,
1 . TRUE . , OUNIT , DSN3 , ANAME3 , ISP3 , ITS3)

END IF
C
C4E READ COMMAND

ELSEIF (CMD . EQ . 'READ 1) THEN
C4E1 GET THE COMMAND DATA SET NAME, INITIALIZE STRESS-PERIOD & TIME-STEP

DSN = UTRMUP (LINE(6:11) ,6) I
ANAMEl = LINE (26.49) I
IUSP = O
IUTS = O

IF DSN IS 'CLASS', IT MUST BE HANDLED DIFFERENTLY
IF (DSN .EQ. 'CLASS') THEN

CALL REA1CL (LINE, NUCLAS , CLASES, OUNIT, EXCMD)
IF (. NOT . EXCMD) GOTO 999
RETURN

END IF
C
C4E3 IS THE DSN ONE OF RESERVED DSNS, IF SO WHAT IS:

C
C4E2

1
1

C
C4E4

9O11

THE UNIT NUMBER, FORMAT, AND ARRAY-NAME
CALL REA1DF (DSN, INUNIT, DSTYPE, ANAMEl , OUNIT,
IBCFCB , IWELCB , IDRNCB , IRIVCB , IEVTCB , IGHBCB , IRCHCB , IHEDUN ,
IDDNUN , IUNIT (2) , IUNIT (8) , TEXTEX)

IF NEEDED, GET UNIT NUMBER AND FORMAT FROM COMMAND LINE
IF (DSN .EQ. 'UBOUND') THEN
READ (LINE, 9011, ERR=993) INUNlT
DSTYPE = '3FI'
FORMAT (12X,I2)

ELSEIF (DSTYPE . EQ . 'XXX') THEN[
READ (LINE, 9011, ERR=993) INUNJET
DSN2 = UTRMUP (LINE (16: 18), 3)
DSTYPE = DSN2(1:1) // 'F' // DSN2(3:3)
ANAMEl = LINE (26:49)

ELSE

134

C4E5 GET COMMAND STRESS PERIOD AND TIME STEP AND CHECK ITS BOUNDS
ORIENT = LINE(20:24)
READ (ORIENT,9OO8,ERR=994) IUSP,IUTS

9OO8

9OO9

901O

9O12

C
C4E6

FORMAT (12,IX,12)
IF (IUSP .LT. O .OR. IUSP .GT. NPER) THEN

EXCMD = .FALSE.
WRITE (OUNIT,90O9) DSN , IUSP,NPER
FORMAT (/, ' READ command for ' ,A6,' Stress period',13,

' is beyond the defined limit:',/,' Number of stress'
' per i ods =',13)

GOTO 999
END IF
IF (DSN .NE. 'WELL' .AND. DSN .NE. 'RECH') THEN

IF (IUTS.LE.O .OR. IUSP.LE.O .OR. IUTS.GT.NTS(IUSP))THEN
EXCMD = .FALSE.
WRITE (OUNIT,9O1O) DSN,IUSP,IUTS
FORMAT (/,' READ command for ',A6,' Stress period',13,

' Time step',13, ' is beyond the defined I imit. ')
IF (IUSP .GT. O .AND. IUSP .LE. NPER)

WRITE (OUNIT,9012) NTS(IUSP)
FORMAT(' Number of time steps for stress period =',I3)
GOTO 999

END IF
ENDIF

GET THE HEAD/DRAWDOWN OUTPUT FLAGS FOR THE STRESS-PERIOD & TIME-STEP
IF (DSN .EQ. 'HEAD' .OR. DSN .EQ. 'DRAWDN') THEN

CALL UI01FG (NPER,NLAY,NTS,IUSP,IUTS,IOFLG,IPKGSP(12),
1 IUNIT(12),OUNIT,EXCMD)

IF (.NOT. EXCMD) GOTO 999
ENDIF

ENDIF
C
C4E7 PRINT HEADINGS

CALL SCTL1H (CMD,DSN,DSN2,DSN3,ANAMEl,ANAME2,ANAME3,INUNIT,
1 IULAY2,IUSP,ISP2,IUTS,ITS2,' ',OUNIT)

C
C4E8 READ THE REQUESTED DATA

CALL REA1EX (DSN,DSTYPE,NCOL,NROW,NLAY,INUNIT,EXCMD,OUNIT,
1 LCWELL,MXWELL,NWELLS,LCIRCH,LCRECH,NRCHOP,LCU2DS,LCU3DS,
2 IOFLG,LCUBOU,DS1,DS2,IUSP,IUTS,TEXTEX,IPKGSP,UBIN,ANAMEl ,
3 NOPRT)

IF (.NOT. EXCMD) GOTO 999
C
C4E9 ALTER THE PROPER STACK DESCRIPTORS

IF (DSTYPE .EQ. '2D') CALL UBUBLE (LCU2DS,U2DDSN,U2DANM,
1 ISKSP,ISKTS,CMD,.FALSE.,OUNIT,DSN,ANAMEl,IUSP,IUTS)

IF (DSTYPE .EQ. '3D') CALL UBUBLE (LCU3DS,U3DDSN,U3DANM,
1 ISKSP,ISKTS,CMD,.TRUE.,OUNIT , DSN,ANAMEl,IUSP,IUTS)

C
C4F - 'TITL'E COMMAND

ELSEIF (CMD .EQ. 'TITL') THEN
TITLES(4) = LINE (6:)

C4G '****' COMMENT LINE
ELSEIF (CMD .EQ. '****') THEN

RETURN
C
C4H 'SLIC'E COMMAND

ELSEIF (CMD .EQ. 'SLIC') THEN
C4H1 GET THE COMMAND ARGUMENTS: COORDINATES OF THE SLICING PLANE

READ (LINE,9O13,ERR=991) ((COORD(I,J),J=l,3),1=1,3)
9013 FORMAT (4X,9(IX,13))

135

c
C4H2

C
C4I

9015

115

9016
a

C
C4J --

C
C4J1 -

120

C
C4J2 -

14

C
C4J3 -

- SLICE THE MODEL GRID TO CREATE A USER-BOUNDARY ARRAY
CALL SLI1EX (NCOL,NROW,NLAY,COORd,PLANE,UBOUND,

1 DELR,DELC,DELL,OUNIT,EXCMD)
IF (.NOT. EXCMD) GOTO 999
UBIN = .TRUE.

- 'THIC'KNESS COMMAND
ELSEIF (CMD .EQ. 'THIC') THEN

N = NLAY / 7
IF (MOD (NLAY,7) .NE. O) N = N +!l
DO 115 J=1,N !

L = J * 7
IF (L .GT. NLAY) L = NLAY
READ (LINE,9015,ERR=892) (DELL(I),1=1+(J-l)*7,L)
FORMAT (5X,7F1O.O)
IF (J .NE. N) READ (INCTL,9OOl) LINE

CONTINUE
WRITE (OUNIT,9016) (I,DELL(I),1=1,NLAY)
FORMAT (//,10X,'LAYER LAYER',/,1OX,'NUMBER THICKNESS',

/,10X,17('-'),999(/,10X,I4,G12.3E2))

'VECT'OR COMMAND
ELSEIF (CMD .EQ. 'VECT') THEN

- CHECK THAT USER-BOUNDARY AND PLANE HAVE BEEN DEFINED
HOLD =0.0
DO 120 1=1,3

HOLD = HOLD + ABS (PLANE(I))
IF ((.NOT. UBIN) .OR. (HOLD .LE. TINY)) GOTO 890

- GET THE COMMAND ARGUMENTS: UNIT NUMBER, ORIENTATION, AND FACTOR
READ (LINE,14,ERR=893) IGUNIT, GRFACT
FORMAT (5X,I2,7X,F10.O)
ORIENT = UTRMUP (LINE(9.13),5)

 MAKE SURE THAT BCF CELL-FACE FLOW-TERMS ARE ON THE STACK
ANAME2 = 'FRFACE'
CALL USKDUD (NROW,NCOL,NLAY,ANAME2,U2DDSN,U3DDSN,U2DANM,
U3DANM,ISKSP,ISKTS,LCU2DS,LCU3DS,ISKPOS,IOFLG,IULAY,LCDS,

! LENDS,ANAME1,ISP,ITS,.TRUE.,NPER,NTS,IPKGSP(12),IUNIT(12),
! .TRUE.)

IF (ISKPOS .EQ. O) GOTO 891
LCFRFA = LCDS
ANAME2 = 'LOFACE'
CALL USKDUD (NROW,NCOL,NLAY,ANAME2,U2DDSN,U3DDSN,U2DANM,
U3DANM,ISKSP,ISKTS,LCU2DS,LCU3D$,ISKPOS,IOFLG,IULAY,LCDS,

> LENDS , ANAME1, ISP , ITS , . TRUE ., NPEft, NTS , IPKGSP (12) , IUNIT(12) ,
I .TRUE.)

IF (ISKPOS .EQ. O) GOTO 891
LCLOFA = LCDS
ANAME2 = 'RIFACE'
CALL USKDUD (NROW,NCOL,NLAY,ANAME2,U2DDSN,U3DDSN,U2DANM,
U3DANM,ISKSP,ISKTS,LCU2DS,LCU3DS,ISKPOS,IOFLG,IULAY,LCDS,

> LENDS,ANAME1,ISP,ITS,.TRUE.,NPER,NTS,IPKGSP(12),IUNIT(12),
J .TRUE.)

IF (ISKPOS .EQ. O) GOTO 891
LCRIFA = LCDS

C
C4J4 CALCULATE THE FLOW VECTORS I

CALL VEC1EX (NCOL,NROW,NLAY,LCLOFA,LCFRFA,LCRIFA,UBOUND,
1 LCDELR,LCDELC,LCDELL,LCGRAF,LNGRAF,PLANE,ORIENT,GRFACT,
2 IGUNIT,OUNIT,EXCMD)

IF (.NOT. EXCMD) GOTO 999

136

c
C4K --

C
C4K1 -
C

 'WRIT' COMMAND
ELSEIF (CMD .EQ 'WRIT') THEN

C
C4K2

 - GET COMMAND ARGUMENTS: DATA SET NAME, LAYER, MASK, UNIT, TYPE,
MISSING VALUE

DSN = UTRMUP (LINE(6 ill),6)
CULAY = LINE (13:14)
CMASK = LINE (16:21)
READ (CULAY,9O03,ERR=996) IULAY1
READ (CMASK,9004,ERR=997) IZMASK,IBMASK,IUMASK
MASKUM = IABS(IZMASK) + IABS(IBMASK) + IABS(IUMASK)
READ (LINE,9017,ERR=993) INUNIT

9017 FORMAT (22X,I2)
DSTYPE = UTRMUP (LINE(26:28),3)
DSN2 = DSTYPE
MISSTR = LINE(30:59)

 GET THE REQUESTED DATA ARRAY
CALL ULC1DS (NROW,NCOL,NLAY,DSN,IUNIT,OUNIT,IULAY1,DSl,LCDS1,

1 LENDS,ANAME1,EXCMD,U2DDSN,U3DDSN,LCU2DS,LCU3DS,U2DANM,
2 LCRECH,LCIRCH,LCDELC,LCDELR,NRCHOP,LCWELL,MXWELL,NWELLS,
3 USDANM^CIBO^LCSTR^LCSC^LCBO^LCTOP^CIOFG, .TRUE. ,
4 IPKGSP,ISKSP,ISKTS,ISPl,ITS1,NPER,NTS)

IF (.NOT. EXCMD) GOTO 999

 PRINT HEADINGS
CALL SCTL1H (CMD,DSN,DSN2,DSN2,ANAMEl,ANAMEl,ANAMEl,IULAY1,

1 INUNIT,ISPl,ISPl,ITS1,ITS1,' ',OUNIT)

 - REPLACE MASKED DATA WITH THE MISSING VALUES
IF (MASKUM .GT. 0) CALLMAS1MV (LENDS,NCRL,NCR,DSl,IULAY1,NLAY,

1 EXCMD,IOFLG,UBIN,LCDSl,IBMASK,IZMASK,IUMASK,OUNIT,DSN,IBOUND,
2 UBOUND,MISSTR)

IF (.NOT. EXCMD) GOTO 999

 WRITE THE REQUESTED DATA ARRAY
CALL WRT1EX (NCOL,NROW,NLAY,DSl,INUNIT,DSTYPE,LENDS,

1 IULAY1,ANAMEl,ITS1,ISPl,OUNIT,EXCMD)
IF (.NOT. EXCMD) GOTO 999

C
C4K3

C
C4K4

C
C4K5

C
C4L -

C
C4L1
C

- 'PRIN' COMMAND
ELSEIF (CMD .EQ 'PRIN') THEN

C
C4L2

-- GET COMMAND ARGUMENTS. DATA SET NAME, LAYER, MASK, FORMAT CODE,
AND MISSING VALUE

DSN = UTRMUP (LINE(6:11),6)
CULAY = LINE (13:14)
CMASK = LINE (16:21)
READ (CULAY,9003,ERR=996) IULAY1
READ (CMASK,9004,ERR=997) IZMASK,IBMASK,IUMASK
MASKUM = IABS(IZMASK) + IABS(IBMASK) + IABS(IUMASK)
DSTYPE = LINE (23:25)
DSN2 = DSTYPE
MISSTR = LINE (27:56)

 GET THE REQUESTED DATA ARRAY
CALL ULC1DS (NROW,NCOL,NLAY,DSN,IUNIT,OUNIT,IULAY1,DSl,LCDSl,

1 LENDS,ANAMEl,EXCMD,U2DDSN,U3DDSN,LCU2DS,LCU3DS,U2DANM,
2 LCRECH,LCIRCH,LCDELC,LCDELR,NRCHOP,LCWELL,MXWELL,NWELLS,
3 U3DANM,LCIBOU,LCSTRT,LCSC1,LCBOT,LCTOP,LCIOFG,.TRUE.,
4 IPKGSP,ISKSP,ISKTS,ISPl,ITSl,NPER,NTS)

IF (.NOT. EXCMD) GOTO 999

137

C4L3 PRINT HEADINGS
CALL SCTL1H (CMD,DSN,DSN2,DSN2,ANAMEl,ANAME1,ANAME1,

1 IULAY1,IFMTCD,ISP1,ISP1,ITS1,IT$1,' ',OUNIT)
C
C4K4 -- REPLACE MASKED DATA WITH THE MISStNG VALUES

IF (MASKUM .GT. 0) CALLMAS1MV (LENDS,NCRL,NCR,DS1 , IULAY1,NLAY
1 EXCMD,IOFLG,UBIN,LCDS1,IBMASK,I^MASK,IUMASK,OUNIT,DSN,IBOUND,
2 UBOUND,MISSTR)

IF (.NOT. EXCMD) GOTO 999
C
C4L5 -- WRITE THE REQUESTED DATA ARRAY

CALL PRT1EX (NCOL,NROW,NLAY,NCRL DS1,DS2,DSTYPE,ANAMEl,IULAY1,
LCDS1,LENDS,ISPl,ITS1,OUNIT,EXCMD)
IF (.NOT. EXCMD) GOTO 999

C
C4M 'HEAD' COMMAND

ELSEIF (CMD .EQ. 'HEAD') THEN
C

GET THE FORTRAN UNIT NUMBER FROM!THE COMMAND LINE
READ (LINE,9018,ERR=993) IOUNIT
FORMAT (5X,I2)

C4M1 --

9018
C
C4M2

1
2

C
C4M3

GET DESCRIPTORS FOR HEAD ARRAY
CALL REA1DF ('HEAD ',INUNIT,DSTYPE,ANAMEl,OUNIT,
IBCFCB,IWELCB,IDRNCB , IRIVCB,IEVTCB,IGHBCB,IRCHCB,IHEDUN,
IDDNUN,IUNIT(2),IUNIT(8),TEXTEX)

WRITE THE REQUESTED COMPUTED HEADS TO A FORTRAN UNIT
CALL HEA1EX (NCOL,NROW,NLAY,IOFLG,INUNIT,OUNIT,IUNIT(12),
TEXTEX,IPKGSP(12),NPER,NTS,IOUNIT,LINE(9:SO),DS1,EXCMD)

C4N 'REBO' COMMAND
ELSEIF (CMD .EQ. 'REBO') THEN

C
C4N1 GET STRESS-PERIOD AND TIME-STEP

C
C4N2

1
1

C
C4N3

ORIENT = LINE (6:1O)
READ (ORIENT,9008,ERR=994) IUSP,

FROM COMMAND LINE

IUTS

GET DESCRIPTORS FOR HEAD ARRAY
CALL REA1DF ('HEAD ',INUNIT,DSTYPE,ANAMEl,OUNIT,
IBCFCB,IWELCB,IDRNCB,IRIVCB,IEVTCB,IGHBCB,IRCHCB,IHEDUN,
IDDNUN,IUNIT(2),IUNIT(8),TEXTEX)

RESET THE MODEL BOUNDARY ARRAY
CALL REB1EX (NCOL,NROW,NLAY,IOFLG,INUNIT,OUNIT,IUNIT(12),
TEXTEX,IPKGSP(12),NPER,NTS,IUSP,IUTS,IBOUND,DSl,EXCMD)

C5 COMMAND NOT DEFINED IN CTL1CM
ELSE

EXCMD = .FALSE.
WRITE (OUNIT,990) CMD

99O FORMAT (/,' Unknown command
GOTO 999

END IF
RETURN

',A4,' refer to table 4 s)

138

c
C6 ERROR CONDITIONS...

890 WRITE (OUNIT,9890)
9890 FORMAT (/,' Vectors requested but no slice has been defined 1)

GOTO 999
891 WRITE (OUNIT,9891) ANAME2

9891 FORMAT (/,' Vectors requested but ',A,' has not been read')
GOTO 999

892 WRITE (OUNIT,9892)
9892 FORMAT (/,' Some layer thickness is non-numeric')

GOTO 999
893 WRITE (OUNIT,9893)
9893 FORMAT (/,' Graphic output unit or vector factor is non-numeric')

GOTO 999
894 WRITE (OUNIT,9894)
9894 FORMAT (/,' Comparison limit is non-numeric')

GOTO 999
991 WRITE (OUNIT,9991) LINE(6:80)

9991 FORMAT (/,' Some slicing coordinate is non-numeric: ',A)
GOTO 999

993 WRITE (OUNIT,9993) DSN,LINE(13:14)
9993 FORMAT (/,' File unit specified for ',A6,' not an integer: ' ,A2)

GOTO 999
994 WRITE (OUNIT,9994) ORIENT

9994 FORMAT (/,' Stress period and time step not integers: ',A)
GOTO 999

995 WRITE (OUNIT,9995) DSN,LINE(23:25)
9995 FORMAT (/,' Number of histogram classes for ',A6,' not an ',

1 ' i nteger: ',A3)
GOTO 999

996 WRITE (OUNIT,9996) DSN,CULAY
9996 FORMAT (/,' Layer specified for ',A6,' not an integer: ',A2)

GOTO 999
997 WRITE (OUNIT,9997) DSN,CMASK

9997 FORMAT (/,' Mask specifiers for ',A6,' not all integers: ',A6)
GOTO 999

998 WRITE (OUNIT,9998)
9998 FORMAT (/,' Unable to read command line')

GOTO 10000
999 WRITE (OUNIT,9999) CMD

9999 FORMAT C///,1X,A4,' COMMAND ABORTED')
EXCMD = .FALSE.
RETURN

C
C7 SET END-OF-FILE FLAG
10000 EOF = .TRUE.

RETURN
END

139

SUBROUTINE DFT1CM (LINE,NROW,NCOL,NLAY,INCTL,OUNIT,EXCMD,EOF,UBIN,
1 U2DDSN,U3DDSN,U2DANM,U3DANM,ISKSP,ISKTS,LCSTRT,LCIBOU,LCSC1,
2 LCTOP,LCIOFG,LCBOT,LCDELR,LCDELC,LCWELL,NWELLS,MXWELL,NRCHOP,
3 LCIRCH,LCRECH,LCU2DS,LCU3DS,LCWDS,IUNIT , NUCLAS , CLASES,TITLES,
4 IBOUND , UBOUND,DS1,DS2,STKA2D,STKA3D,NPER,NTS,KSP,KTS,IOFLG,
5 LCUBOU,LCDELL,DELR,DELC,DELL , LCGRAF,LNGRAF,IBCFCB,IWELCB,IDRNCB,
6 IRCHCB,IEVTCB,IRIVCB,IGHBCB,IHEDUN,IDDNUN,IPKGSP,PLANE,NOPRT ,
7 NCMDEX,NCMDRD) |

DEFAULT COMMAND PROCESSING, TWO CHANGES MUST BE MADE TO
MODIFY DEFAULT PROCESSING COMMANDS:
OF NDFTCM, AND (2) DATA SPECIFICATIONS FOR DFTCMD

(1) PARAMETER SPECIFICATION

C
Cl

nodes i n the mode

DOUBLE PRECISION DS1, DS2, STKA2D, STKA3D
DIMENSION DS1 (NCOL*NROW*NLAY) , DS2 (N|COL*NROW*NLAY) , CLASES (2O)
DIMENSION STKA2D(NCOL,NROW),STKA3D(NCOL,NROW,NLAY),DELL(NLAY)
DIMENSION PLANE(3)
INTEGER IBOUND (NCOL, NROW, NLAY) , UBOLJND (NCOL, NROW , NLAY)

SINSERT STKSIZE.INS i
$INSERT STKDEF.INS

INTEGER IUNIT(24),OUNIT,LCWDS(2),ICJFLG(NLAY,2),NTS(NPER)
INTEGER IPKGSP(12)
LOGICAL EXCMD,EOF,UBIN
CHARACTER TITLES(4)*128,LINE*8O

C
C

PARAMETER (NDFTCM=14)
CHARACTER DFTCMD(NDFTCM)*8O
DATA (DFTCMD(I),1=1,NDFTCM) /

1 'TITL Analysis of active wells',
2 'STAT WELL OO Ol',
3 'TITL Analysis of recharge volume for a I I
4 'STAT RECHV,
5 'TITL Frequency analysis of starting heads at non-zero nodes',
6 'HIST STRT OO O1OOOO 20',
7 'TITL Checking for pumpage at inactive or constant head nodes',
8 'COMP WELL OO GT O.O OO OO-10O',
9 'TITL Checking for recharge at inactive or constant head nodes',
1 'COMP RECH OO GT O.O OO OO-lOO',
2 'TITL Checking for primary storage; coefficient > 0.005' ,
3 'COMP SCI OO GT O.OO5 OO OOOOdO 1OO',
4 'TITL Checking for starting heads below layer bottom',
5 'COMP STRT OO LT BOT OO' /

-- PRINT A PAGE SHOWING THE DEFAULT COMMANDS ARE IN EFFECT
WRITE (OUNIT,!) (TITLES(I),1=1,3)

1 FORMAT (1H1,A128,2(/,1X,A128),//,lX,
1 'PROCESSING DEFAULT COMMANDS:',/)
WRITE (OUNIT,2) (DFTCMD(I),1=1,NDFTCM)

2 FORMAT (/,1OX,A8O,/,10X,A8O)
C
C2 PROCESS THE DEFAULT COMMAND INDIVIDUALLY

DO 10 1=1,NDFTCM
CALL DFLTEN (DFTCMD(I),NROW,NCOL,NLAY,INCTL,OUNIT,EXCMD,EOF,

1 UBIN,U2DDSN,U3DDSN,U2DANM,U3DANM,ISKSP,ISKTS,LCSTRT,LCIBOU,
2 LCSC1,LCTOP,LCIOFG,LCBOT,LCDELR,LCDELC,LCWELL,NWELLS,MXWELL,
3 NRCHOP,LCIRCH,LCRECH,LCU2DS,LOjSDS,LCWDS,IUNIT,NUCLAS,CLASES ,
4 TITLES,IBOUND,UBOUND,DS1,DS2,STKA2D,STKA3D,NPER,NTS,KSP,KTS,
5 IOFLG,LCUBOU,LCDELL,DELR,DELC,DELL,LCGRAF,LNGRAF,IBCFCB,
6 IWELCB, IDRNCB, IRCHCB, IEVTCB, IR3JVCB, IGHBCB, IHEDUN, IDDNUN,
7 IPKGSP,PLANE,NOPRT)

NCMDRD = NCMDRD + 1
IF (EXCMD) NCMDEX = NCMDEX + 1

1O CONTINUE

140

c
C3 RETURN TO THE MAIN PROGRAM AND EXIT BY SETTING THE END-OF-FILE FLAG

EOF = .TRUE.
RETURN
END

SUBROUTINE SCTL1H (CMD,DSN1,DSN2,DSN3,ANAMEl,ANAME2,ANAME3,
1 IULAY1,IULAY2,ISP1,ISP2,ITS1,ITS2,OPRATR , OUNIT)

C
C PRINT HEADING FOR COMMANDS VIA CONSISTENT FORMATS
C

INTEGER OUNIT
CHARACTER CMD*4,DSN1*6,DSN2*6,DSN3*6,ANAMEl*24,ANAME2*24
CHARACTER ANAME3*24,OPRATR*2 , CHAROP*17

C
IF (CMD .EQ. 'STAT 1) THEN

C
Cl SUBTITLES FOR STATISTICS COMMAND

WRITE (OUNIT,!) 'STATISTICS FOR : ',DSN1,ANAMEl
IF (IULAY1 .GT. O) WRITE (OUNIT,2) IULAY1
IF (IULAY1 .EQ. 0) WRITE (OUNIT,3)
IF (IULAY1 .LT. 0) WRITE (OUNIT,4)
IF (ISP1 .GT. 0) WRITE (OUNIT,5) ISP1,ITS1
WRITE (OUNIT,6)

ELSEIF (CMD .EQ. 'HIST') THEN
C
C2 SUBTITLES FOR HISTOGRAM COMMAND

WRITE (OUNIT,!) J HISTOGRAM FOR : ',DSN1,ANAMEl
IF (IULAY1 .GT. 0) WRITE (OUNIT,2) IULAY1
IF (IULAY1 .EQ. 0) WRITE (OUNIT,3)
IF (IULAY1 .LT. 0) WRITE (OUNIT,4)
IF (ISP1 .GT. 0) WRITE (OUNIT,5) ISP1,ITS1
WRITE (OUNIT,6)

ELSEIF (CMD .EQ. 'COMP 1) THEN
C
C3 SUBTITLES FOR COMPARISON COMMAND

WRITE (OUNIT,!) ' COMPARISON OF : ',DSN1,ANAMEl
IF (IULAY1 .GT. O) WRITE (OUNIT,2) IULAY1
IF (IULAY1 .EQ. 0) WRITE (OUNIT,3)
IF (IULAY1 .LT. 0) WRITE (OUNIT,4)
IF (ISP1 .GT. 0) WRITE (OUNIT,5) ISP1,ITSl
WRITE (OUNIT,!) ' AGAINST : ',DSN2,ANAME2
IF (IULAY2 .GT. 0) WRITE (OUNIT,2) IULAY2
IF (IULAY2 .EQ. 0) WRITE (OUNIT,3)
IF (IULAY2 .LT. O) WRITE (OUNIT,4)
IF (ISP2 .GT. 0) WRITE (OUNIT,5) ISP2,ITS2
WRITE (OUNIT,?) DSN1,OPRATR,DSN2

ELSEIF (CMD .EQ. 'MATH 1) THEN

141

c
C4 SUBTITLES FOR MATHEMATICAL COMPUTATION COMMAND

WRITE (OUNIT,!) 'COMPUTATION OF : ',DSN3,ANAME3
WRITE (OUNIT,!) ' FROM : ',DSN1,ANAME1
IF (IULAY1 .GT. 0) WRITE (OUNIT,2) IULAY1
IF (IULAY1 .EQ. 0) WRITE (OUNIT,3)
IF (IULAY1 .LT. 0) WRITE (OUNIT,4)
IF (ISP1 .GT. 0) WRITE (OUNIT,5) | ISP1,ITS1
IF (OPRATR .EQ. ' + ' .OR. OPRATR .EQ 'AD') THEN

CHAROP = ' PLUS : '
ELSEIF (OPRATR .EQ. '-' .OR. OPRATR .EQ. 'SU') THEN

CHAROP = ' MINUS : '
ELSEIF (OPRATR .EQ. '/' .OR. OPRATR .EQ. 'DI') THEN

CHAROP = ' DIVIDED BY : '
ELSEIF (OPRATR .EQ. '*' .OR. OPRATR .EQ. 'MU') THEN

CHAROP = ' MULTIPLIED BY : '
ELSEIF (OPRATR .EQ. '**' .OR. OPRATR .EQ. 'EX') THEN

CHAROP = ' RAISED TO : '
ELSEIF (OPRATR . EQ. '||' .OR. OPiRATR . EQ. 'AB') THEN

CHAROP = ' ABSOLUTE VALUEJS '
ELSE

CHAROP = ' ? : '
END IF
IF (OPRATR .NE. '||' -AND. OPRATR .NE. 'AB') THEN

WRITE (OUNIT,!) CHAROP,DSN2,ANAME2
IF (IULAY2 .GT. O) WRITE (OUNIT,2) IULAY2
IF (IULAY2 .EQ. 0) WRITE (OMNIT,3)
IF (IULAY2 .LT. 0) WRITE (OUNIT,4)
IF (ISP2 .GT. 0) WRITE (OUN3tT,5) ISP2,ITS2

ELSE
WRITE (OUNIT,!) CHAROP

END IF
WRITE (OUNIT,6)

ELSEIF (CMD .EQ. 'READ') THEN
C
C5 SUBTITLES FOR ARRAY READING COMMAND

WRITE (OUNIT,1) ' READING : ',DSNl,ANAME1
WRITE (OUNIT,8) IULAY1
IF (ISP1 .NE. 0) WRITE (OUNIT,5J ISP1,ITS!

ELSEIF (CMD .EQ. 'SLIC') THEN
C
C6 SUBTITLES FOR ARRAY SLICING COMMAND

WRITE (OUNIT,!) ' CREATION OF: ','UBOUND',
1 'USER BOUNDARY MASK'

WRITE (OUNIT,6)
ELSEIF (CMD .EQ. 'WRIT') THEN

C
C7 SUBTITLES FOR ARRAY WRITING COMMAND

WRITE (OUNIT,!) ' WRITING OF : ',DSNl,ANAME1
IF (IULAY1 .GT. 0) WRITE (OUNIT,2) IULAY1
IF (IULAY1 .EQ. 0) WRITE (OUNIT,3)
IF (ISP1 .GT. 0) WRITE (OUNIT,5) ISPl,ITS!
WRITE (OUNIT,8) IULAY2
WRITE (OUNIT,9) DSN2
WRITE (OUNIT,6)

ELSEIF (CMD .EQ. 'PRIN') THEN

L42

c
C8 SUBTITLES FOR ARRAY PRINTING COMMAND

WRITE (OUNIT,!) ' PRINTING OF : ',DSN1,ANAME1
IF (IULAY1 .GT. O) WRITE (OUNIT,2) IULAY1
IF (IULAY1 .EQ. O) WRITE (OUNIT,3)
IF (ISP1 .GT. O) WRITE (OUNIT,5) ISP1, ITSl
WRITE (OUNIT,9) DSN2
WRITE (OUNIT,6)

END IF
RETURN

1 FORMAT (//,10X,A17,A6,' - ',A24)
2 FORMAT (36X,'LAYER ',13)
3 FORMAT (36X,'ALL LAYER(S)')
4 FORMAT (36X,'COMPRESSED TO ONE LAYER')
5 FORMAT (36X,'STRESS PERIOD ',13,/,36X,'TIME STEP ',13)
6 FORMAT (/)
7 FORMAT (/,19X,'WHERE : ',A6,IX,A2,IX,A6,/)
8 FORMAT (36X,'ON UNIT: ',13)
9 FORMAT (36X,'USING FORMAT CODE: ',A)

END

SUBROUTINE STA1SL (IPOINT,NLAY,NCR,NCRL,DSN,IOFLG)
C
C SAVE LOCATIONS OF POINTS INTO IPOINT FOR LOCATING EXTREMA DURING STAT
C

CHARACTER DSN*6
INTEGER IOFLG(NLAY,2), IPOINT(NCRL)

C
$INSERT FLWCOM.INS
C
Cl INITIALIZE POINTERS TO LOCATION WITHIN THE MATRIX & WITHIN THE ARRAY

LCGRID = 1
LCARAY = 1

C
C2 CALCULATE THE MATRIX POSITION FOR EACH ARRAY POSITION

IF (DSN .EQ. 'TOP') THEN
C
C2A TOP OF UNIT MAY NOT CONTAIN ALL LAYERS

DO 10 K=1,NLAY
LCGRID = LCGRID + NCR * (K-l)
IF (LAYCON(K) .EQ. 2 .OR. LAYCON(K) .EQ. 3) THEN

DO 5 1=1,NCR
IPOINT(LCARAY) = LCGRID
LCGRID = LCGRID + 1
LCARAY = LCARAY + 1

5 CONTINUE
ENDIF

10 CONTINUE
ELSEIF (DSN .EQ. 'BOT') THEN

C
C2B BOTTOM OF UNIT MAY NOT CONTAIN ALL LAYERS

DO 20 K=1,NLAY
LCGRID = LCGRID + NCR * (K-l)
IF (LAYCON(K) .EQ. 1 .OR. LAYCON(K) .EQ. 3) THEN

DO 15 1=1,NCR
IPOINT(LCARAY) = LCGRID
LCGRID = LCGRID + 1
LCARAY = LCARAY + 1

15 CONTINUE
ENDIF

20 CONTINUE
ELSEIF (DSN .EQ. 'HEAD') THEN

143

c
C2C COMPUTED HEADS MAY NOT CONTAIN ALL LAYERS

DO 30 K=1,NLAY
LCGRID = LCGRID + NCR * (K-l)
IF (IOFLG(K,1) .NE. 0) THEN

DO 25 1=1,NCR
IPOINT(LCARAY) = LCGRID
LCGRID = LCGRID + 1
LCARAY = LCARAY + 1

25 CONTINUE
END IF

30 CONTINUE
ELSEIF (DSN . EQ. 'DRAWDN') THEN

C
C2D -- COMPUTED DRAWDOWN MAY NOT CONTAIN ALL LAYERS

DO 40 K=1,NLAY
LCGRID = LCGRID + NCR * (K-l)
IF (IOFLG(K,2) .NE. O) THEN

DO 35 1=1,NCR j
IPOINT(LCARAY) = LCGRID
LCGRID = LCGRID + 1
LCARAY = LCARAY + 1

35 CONTINUE
END IF

40 CONTINUE
ELSE

C
C2E ALL OTHER DATA SETS CONTAIN EVERY LAYER

DO 50 I=1,NCRL
IPOINT(I) = I

50 CONTINUE
ENDIF

C
RETURN
END

SUBROUTINE STAlEX (NCOL,NROW,NLAY,NODES,ARRAY,IPOINT,IJUMP ,
1 OUNIT,EXCMD)

C
C SORT INPUT ARRAY, THEN COMPUTE STATISTICS VIA SSTA1E
C

DOUBLE PRECISION ARRAY
DIMENSION ARRAY(NODES)
DIMENSION STAT(15), IPOINT(NODES+1)
INTEGER OUNIT
LOGICAL EXCMD

C
Cl IF LESS THAN TWO DATA VALUES, THEN STATISTICS ARE USELESS

IF (NODES .LT. 2) THEN
WRITE (OUNIT,91) NODES
EXCMD = .FALSE.
RETURN

ENDIF
C
C2 SORTS VALUES WITH PERMUTATIONS (USE ONE OF FOLLOWING)
C
C2A IMSL EDITION 10
C CALL DSVRBP (NODES,ARRAY,ARRAY,IPOINT(IJUMP))
C
C2B IMSL EDITION 9

CALL VSRTRD (ARRAY,NODES,IPOINT(IJUMP))

144

c
C3 COMPUTE AND PRINT THE STATISTICS

CALL SSTA1E (ARRAY,NODES,STAT,OUNIT)
WRITE (OUNIT,92)
WRITE (OUNIT,93) STAT(l), STAT(8), STAT(2), STAT(3),

1 STAT(14), STAT(5)
WRITE (OUNIT,94)
WRITE (OUNIT,95) ARRAY(l), ARRAY(NODES), STAT(7), STAT(6) ,

1 STAT(9), NODES
WRITE (OUNIT,96)
WRITE (OUNIT,93) STAT(IO), STAT(12), STAT(4), STAT(13), STAT(ll)
NCR = NCOL * NROW
WRITE (OUNIT,97)
IJUMP = IJUMP - 1

C
C4 FIND AND PRINT LOCATION OF MINIMUM: ROW, COLUMN, LAYER

CALL ULC1ND (IPOINT(IJUMP+1),NCOL,NCR,I,J,K)
WRITE (OUNIT,98) 'MINIMUM',I,J,K

C
C5 FIND AND PRINT LOCATION OF MAXIMUM

CALL ULC1ND (IPOINT(IJUMP+NODES),NCOL,NCR,I,J,K)
WRITE (OUNIT,98) 'MAXIMUM',I,J,K

C
C6 FIND AND PRINT LOCATION OF MEDIAN(S)

IREM = MOD (NODES,2)
IMED = NODES / 2
CALL ULC1ND (IPOINT(IJUMP+IMED),NCOL,NCR,I,J , K)
WRITE (OUNIT,98) ' MEDIAN',I,J,K
IF (IREM . EQ. 0) THEN

IMED = IMED + 1
CALL ULC1ND (IPOINT(IJUMP+IMED),NCOL,NCR,I,J,K)
WRITE (OUNIT,98) ' MEDIAN',I,J,K

END IF
RETURN

91 FORMAT (//,10X,'Insufficient data to compute statistics, number',
1 ' of observations = ' , 12)

92 FORMAT (//,1OX,'ARITHMETIC',6X,'ABSOLUTE VALUE',11X,'GEOMETRIC',
1 12X,'HARMONIC', 11X,'ROOT MEAN',/,10X,4(6X,'MEAN',10X),4X,
2 'SQUARE',12X,'VARIANCE')

93 FORMAT (4X,6G20.6E2)
94 FORMAT (/,54X,'SUM OF',12X,'STANDARD',16X,'MEAN',11X,'NUMBER OF',

1 /,13X,'MINIMUM', 13X,'MAXIMUM', 14X,'VALUES', 11X,'DEVIATION',
2 1IX,'DEVIATION',14X,'VALUES')

95 FORMAT (4X y 5G20.6E2,116)
96 FORMAT (/,10X,'COEFFICIENT',15X,'LOWER',35X,'UPPER',6X,

1 'NON-PARAMETRIC',/,10X,'OF SKEWNESS',12X,'QUARTILE',14X,
2 'MEDIAN',12X,'QUARTILE',12X,'SKEWNESS')

97 FORMAT (///,56X,'LOCATION',/,40X,'STATISTIC ROW COLUMN LAYER')
98 FORMAT (/,42X,A7,317)

END

145

SUBROUTINE SSTA1E (ARRAY,NODES,STAT,OUNIT)
C
C COMPUTE STATISTICS ON AN ARRAY CONTAINING NODES POINTS
C INPUT VECTOR ARRAY MUST BE SORTED BEFORE BEING PASSED TO SSTA1E
C THE STATISTICS ARE RETURNED INTO THE FOLLOWING STAT ELEMENTS:
C
C 1 = ARITHMETIC MEAN
C 2 = GEOMETRIC MEAN (WHEN ALL ARRAY > Q)
C 3 = HARMONIC MEAN (WHEN ALL ARRAY > O)
C 4 = MEDIAN
C 5 = VARIANCE
C 6 = STANDARD DEVIATION
C 7 = SUM OF VALUES
C 8 = MEAN ABSOLUTE VALUE
C 9 = MEAN DEVIATION
C 10 = COEFFICIENT OF SKEWNESS : MOMENT (WHEN N GE 3)
C 11 = COEFFICIENT OF SKEWNESS : NON-PARAMETRIC (WHEN Ql NE Q2)
C 12 = LOWER QUARTILE i
C 13 = UPPER QUARTILE
C 14 = SQUARE ROOT OF MEAN OF THE SQUARES
C

DOUBLE PRECISION PROX, HOLD, ARRAY, SSD, SUMX, SUMA, RECX
DOUBLE PRECISION SUM2, AVG, COUNT, SUMDEV, SCD
DIMENSION ARRAY (NODES)
DIMENSION STAT(15)
INTEGER OUNIT
LOGICAL GTZERO, TRIPl, TRIP2

$INSERT TINY.INS
C
Cl INITIALIZE VARIABLES [

WRITE (OUNIT,93)
SUMX = 0.
SUMA = 0.
PROX = 1.
RECX = O.
SUM2 = 0.
GTZERO = .TRUE.
IF (ARRAY(1) .LE. 0.) THEN

GTZERO = .FALSE.
WRITE (OUNIT,94)

END IF
TRIPl = .FALSE.
TRIP2 = .FALSE.

C
C2 CALCULATE PRODUCT OF VALUES AND SUMS OF: VALUES, SQUARES, ABSOLUTE VALUES,
C AND RECIPROCALS

DO 10 1=1,NODES
HOLD = ARRAY(I)
SUMX = SUMX + HOLD
SUM2 = SUM2 + HOLD * HOLD
SUMA = SUMA + ABS (HOLD)
IF (GTZERO .AND. .NOT. TRIPl) THEN

PROX = PROX * HOLD
RECX = RECX + 1.O / HOLD
IF (PROX .GE. HUGE .OR. PROX .LE. SMALL .OR.

1 RECX .GE. HUGE .OR. RECX .LE. SMALL) TRIPl = .TRUE.
END IF

10 CONTINUE
IF (TRIPl) WRITE (OUNIT,95)

146

c
C3

C
C4

 CALCULATE: MEAN, SUM OF VALUES, MEAN ABSOLUTE VALUE, AND ROOT-MEAN-SQUARE
COUNT = DBLE (NODES)
AVG = SUMX / COUNT
STAT (1) = AVG
STAT (7) = SUMX
STAT (8) = SUMA / COUNT
STAT(14) = SORT (SUM2 / COUNT)

CALCULATE: GEOMETRIC & HARMONIC MEANS
IF (GTZERO .AND. .NOT. TRIPl) THEN

1.0 / COUNT
PROX ** HOLD
HOLD
1.0 / (RECX / COUNT)

HOLD
HOLD
STAT (2)
STAT (3)

ELSE
STAT (2)
STAT (3)

ENDIF

O.
0.

C
C5

C
C6

CALCULATE: MEDIAN, LOWER & UPPER QUARTILES
M = NODES / 2
IF (MOD(NODES,2) .EQ. O) THEN

STAT (4) = (ARRAY (M) + ARRAY (M+l)) / 2.0
ELSE

STAT (4) = ARRAY (M+l)
ENDIF
M = NODES / 4
IF (MOD((NODES-1),4) .NE. 0) THEN

IF (M .EQ. 0) M = 1
STAT (12) = (ARRAY (M) + ARRAY (M+l)) / 2.O
M = NODES - M
STAT (13) = (ARRAY (M) + ARRAY (M+l)) / 2.0

ELSE
STAT (12) = ARRAY (M+l)
STAT (13) = ARRAY (NODES-M)

ENDIF

CALCULATE: NON-PARAMETRIC SKEWNESS
HOLD = STAT (13) - STAT (12)
IF (HOLD .LE TINY) THEN

WRITE (OUNIT,99)
STAT (11) = 0.

ELSE
STAT (11) = (STAT (12) + STAT (13)

ENDIF
- 2. * STAT (4)) / HOLD

147

C7 CALCULATE
C

SSD =0.0
SCO =0.0
SUMDEV = 0.
TRIP2 = FALSE.
DO 20 1=1, NODES

VARIANCE, STANDARD DEVIATION, MEAN DEVIATION,
AND COEFFICIENT OF SKEWNESS : MOMENT ESTIMATOR

20

HOLD = ARRAY (I) - AVG
SUMDEV = SUMDEV + DABS (HOLD)
SSD = SSD + HOLD * HOLD
IF (.NOT. TRIP2 .AND. SCD . LT

SCD = SCD + HOLD * HOLD *
ELSE

TRIP2 = .TRUE.
END IF

CONTINUE
STAT (5) = SSD / (COUNT - 1)
STAT (6) = SQRT (STAT (5))
STAT (9) = SUMDEV / COUNT
STAT (10) =O.O
IF (NODES .LT. 3) THEN

WRITE (OUNIT,96)

. HUGE
HOLD

AND. SCO .GT. SMALL) THEN

ELSEIF (ABS (STAT(6)) .LE. TINY) THEN
WRITE (OUNIT,97)

ELSEIF (TRIP2) THEN
WRITE (OUNIT,98)

ELSE
STAT (10) = SCD * COUNT / ((COUNT - 1) * (COUNT - 2))
STAT (10) = STAT(IO) / (STAT(5) * STAT(6))

END IF
RETURN

93 FORMAT (///)
94 FORMAT (10X,'Zero or negative values present in matrix, ',

1 'therefore geometric and harmonic means were not computed',/)
95 FORMAT (10X,'OverfIow or underflow bccurred, '

1 'therefore geometric and harmonic
96 FORMAT (10X,'Number of observations

1 'therefore
97 FORMAT (10X,

1 'therefore

means
< 3,

were not computed',/)

skewness was not computed',/)
Standa rd deviation = 01, ',
skewness was not computed',/)

98 FORMAT (10X, ' Overf I ow or underflow occurred, ',
1 'therefore skewness was not competed ' , /)

'Upper and lower quartiles equal, ',
non-parametric skewness was not computed',/)

99 FORMAT (10X,
1 'therefore
END

148

SUBROUTINE HIS1EX (DARRAY,ARRAY,N,NUCLAS,CLASES,IUCLAS,OUNIT,
1 EXCMD)

C
C COMPUTE AND OUTPUT HISTOGRAM
C
C minimum number of classes = 3
C

DOUBLE PRECISION DARRAY
DIMENSION DARRAY (N) , CLASES(20), FREQS(22)
DIMENSION ARRAY (N), UCLASS(20)
INTEGER OUNIT
LOGICAL EXCMD

SINSERT TINY.INS
C
Cl INTERPRET USER'S IUCLAS SPECIFICATION
C
C IUCLAS < O
C O <= IUCLAS < 3
C
C 3 <= IUCLAS < 20
C 20 <= IUCLAS
C

COMPUTED LOGARITHMIC CLASSES
USER-SPECIFIED CLASSES UNLESS NUCLAS=0,
THEN USES 20 COMPUTED ARITHMETIC CLASSES

OF COMPUTED ARITHMETIC CLASSES
20 COMPUTED ARITHMETIC CLASSES

IF (IUCLAS .GE. 3 .AND. IUCLAS .LT. 2O) THEN
NCLASS = IUCLAS
WRITE (OUNIT,1) NCLASS, 'arithmetic'

ELSEIF (IUCLAS .GE. 2O) THEN
NCLASS = 20
WRITE (OUNIT,!) NCLASS,'arithmetic'

ELSEIF (IUCLAS .GE. 0 .AND. IUCLAS .LT. 3) THEN
IF (NUCLAS .EQ. 0) THEN

WRITE (OUNIT,2)
NCLASS = 20
IUCLAS = 20

ELSE
NCLASS = NUCLAS + 1
NCUT = NCLASS
WRITE (OUNIT,3) NCLASS
DO 40 1=1,NCLASS

UCLASS (I) = CLASES (I)
40 CONTINUE

END IF
END IF

1 FORMAT (/,110,IX,All,' classes were computed')
2 FORMAT (10X,'User-specified classes requested, but have not ',
1 ' been read, using 2O arithmetic computed classes')

3 FORMAT (1OX,'Using',15,' classes from CLASS data set')
C
C2 SORT THE ARRAY TO GET THE MIN AND MAX VALUES (USE ONE OF FOLLOWING)
C
C2A IMSL EDITION 1O
C CALL DSVRGN (N,DARRAY,DARRAY)
C
C2B IMSL EDITION 9

CALL VSRTAD (DARRAY,N)

149

c !
C3 CHECK THE MIN AND MAX VALUES

DIFF = DABS (DARRAY(l) - DARRAY(N))
IF (DIFF .LE. TINY) THEN

WRITE (OUNIT,6) N, DARRAY(l)
6 FORMAT (/,1OX, 'AM ' ,19, ' values in the array are the
1 'same:',F2O.6)

EXCMD = .FALSE.
RETURN

ENDIF
IF (DARRAY(N) .GT. BIG) THEN

WRITE (OUNIT,7) DARRAY(N)
7 FORMAT (/,1OX,'VaIue too Iarge:',G20.5E2,', deactivated nodes',
1 ' may not have been masked')

EXCMD = .FALSE.
RETURN

ENDIF
C !
C4 COPY THE DOUBLE PRECISION ARRAY INTiO THE SINGLE PRECISION ARRAY

DO 50 I = 1, N
ARRAY(I) = DARRAY(I)

50 CONTINUE
C
C5 AUTO-SCALING OF CLASSES

IF (IUCLAS .LT. 0) THEN
C
C5A -- AUTO-SCALING OF LOGARITHMIC CLASSES

IF (ARRAY(1) .GE. -TINY) THEN j
C |
C5A1 MINIMUM >= 0, MAXIMUM > 0

IF (ABS (ARRAY(1)) .LE. TINY) THEN
XMIN =0.0

ELSE
XMIN = LOG10 (ARRAY(1))

ENDIF
XMAX = LOG10 (ARRAY(N))
SGN1 = 1.0
SGN2 = -1.O

ELSEIF (ARRAY(1) .LT. 0.0 .AND.
1 ARRAY(N) .GE. TINY) THEN

C
C5A2 MINIMUM < 0, MAXIMUM >= O

XMIN = LOG10 (-ARRAY(1))
IF (ABS (ARRAY(N)) .LE. TINY) THEN

XMAX =0.0
ELSE

XMAX = LOG10 (ARRAY(N))
ENDIF
SGN1 = 1.0
SGN2 = 1.0

ELSE

150

c
C5A3 MINIMUM < 0, MAXIMUM < 0

XMIN = LOG10 (-ARRAY(1))
XMAX = LOG10 (-ARRAY(N))
SGN1 =-1.0
SGN2 = 1.0

END IF
IF (XMIN .LT. 0.) XMIN = XMIN - 0.5
IF (XMAX .GT. 0.) XMAX = XMAX +0.5
IXMIN = INT (XMIN)
IXMAX = INT (XMAX)
IRANGE = SGN1 * IXMAX + SGN2 * IXMIN
IF (IRANGE .EQ. 0) THEN

WRITE (OUNIT,8)
8 FORMAT (11X,'Logarithmic seal ing inappropriate. ',
1 'AlI data within the same power-of-ten')

EXCMD = .FALSE.
RETURN

END IF
INC = 1
NCLASS = IRANGE + 2
IF (ARRAY(1) .LT. 0. .AND. ARRAY(N) .GT. 0.) NCLASS = NCLASS+2

90 CONTINUE
IF (NCLASS .GT. 20) THEN

INC = INC + 1
NCLASS = IRANGE / INC
GOTO 90

END IF
WRITE (OUNIT,!) NCLASS,'Iogarithmic'
NCUT = NCLASS - 1
II = 1
DO 100 1=1,NCUT

UCLASS(I) = (-SGN2) * 10.0 **
1 (((-SGN2) * (H-1) * INC) + IXMIN)

II = II + 1
IF (ABS (SGN2) .LE. TINY) THEN

SGN2 = -1.
IXMIN = 0
II =1

END IF
IF ((ARRAY(1) .LT. 0 .AND. ARRAY(N) .GT. O) .AND.

1 (ABS (UCLASS(I) +1.) .LE. TINY)) SGN2 = 0.
100 CONTINUE

ELSEIF (IUCLAS .GE. 3) THEN
C
C5B AUTO-SCALING OF ARITHMETIC CLASSES

RING = (ARRAY(N) - ARRAY(1)) / FLOAT(NCLASS - 2)
NCUT = NCLASS - 1
DO 200 1=1,NCUT

UCLASS (I) = ARRAY(1) + FLOAT(I-l) * RINC
200 CONTINUE

UCLASS (NCUT) = ARRAY(N)
END IF

C
C6 FREQUENCIES ARRAY MUST BE EMPTY TO AVOID CUMULATIVE FREQUENCY
1000 DO 1100 I=1,NCLASS+1
1100 FREQS (I) = 0.

C
C7 COUNT NUMBER OF OCCURRENCES IN EACH CLASS (USE ONE OF THE FOLLOWING)
C
C7A IMSL EDITION 1O
C CALL OWFRQ (N,ARRAY,NCUT,2,ARRAY(1),ARRAY(N),O.,UCLASS,FREQS)
C
C7B IMSL EDITION 9

CALL BDCOU1 (ARRAY,N,NCUT,UCLASS,0,0,FREQS,IER)

151

c
C8 PRINT THE FREQUENCY TABLE

WRITE (OUNIT,900) UCLASS(1) , FREQS(1)
WRITE (OUNIT,901)

X (J,UCLASS(J-l),UCLASS(J),FREQS(J), J=2,NCLASS-1)
WRITE (OUNIT,9O2) NCLASS,UCLASS (NCLASS-1) ,FREQS(NCLASS)

C
C9 PREPARE A VERTICAL LINE-PRINTER HISTOGRAM (USE ONE OF THE FOLLOWING)
C
C9A IMSL EDITION 1O (NEXT 2 STATEMENTS)
C CALL UMACH (-2,OUNIT)
C CALL VHSTP (NCLASS,FREQS,4,'HISTOGRAM')
C
C9B IMSL EDITION 9 (NEXT 2 STATEMENTS!)

CALL UGETIO (3,I,OUNIT)
CALL USHST (FREQS,NCLASS,4,IER)

C
RETURN

900 FORMAT (//,1OX,'CLASS',6X,'GREATER tHAN',2X,'LESS THAN OR',
1 ' EQUAL TO',9X,'POPULATION',//,12X,'!',22X,G2O.6E3,F2O.O)

901 FORMAT (11X,12,2X,2G2O.6E3,F2O.O)
902 FORMAT (11X,12,G22.6E3,2OX,F2O.O)

END

152

SUBROUTINE COM1EX (EXCMD,NCOL,NROW,NLAY,LENDS,OUNIT,
1 DSN1,ARRAY1,IULAY1,DSN2,ARRAY2,IULAY2,OPRATR,IBOUND,UBOUND,
2 IZMASK,IBMASK,IUMASK,UBIN,IOFLG,LIMIT)

COMPARE TWO ARRAYS AND PRINT NODES WHERE TEST PASSES
 IGNORE TEST WHERE NODE IS MASKED

DOUBLE PRECISION ARRAYl, ARRAY2
DIMENSION ARRAYl(NCOL*NROW*NLAY), ARRAY2 (NCOL*NROW*NLAY)
INTEGER OUNIT,UBOUND(NCOL*NROW*NLAY),IBOUND(NCOL*NROW*NLAY)
INTEGER IOFLG(NLAY,2)
CHARACTER DSN1*6,DSN2*6,OPRATR*2
EXTERNAL UMASKD, IMASKD
LOGICAL UMASKD, IMASKD, EXCMD, FASTFF, UBIN

$INSERT TINY.INS
C
Cl DESCRIBE COMPARISON TEST BYPASS CONDITIONS

MSKTYP = 1
WRITE (OUNIT,!)
IF (LIMIT .NE. 0) WRITE (OUNIT,6)
IF (IZMASK .NE. 0) THEN

WRITE (OUNIT,2)
IZMASK = 0

END IF
IF (IBMASK .NE. 0) THEN

MSKTYP = MSKTYP + 1
IF (IBMASK EQ -3) THEN

WRITE (OUNIT,3) 'active or
ELSEIF (IBMASK .EQ. -2) THEN

WRITE (OUNIT,3) 'active or
ELSEIF (IBMASK .EQ. -1) THEN

constant head

i nact i ve '

13

WRITE (OUNIT,3)
ELSEIF (IBMASK .EQ

WRITE (OUNIT,3)
ELSEIF (IBMASK .EQ

WRITE (OUNIT,3)
ELSEIF (IBMASK .EQ

WRITE (OUNIT,3)
END IF

END IF
IF (IUMASK .NE. 0) THEN

IF (.NOT. UBIN) THEN
IUMASK = 0
WRITE (OUNIT,4)
GOTO 13

END IF
MSKTYP = MSKTYP
IF (IUMASK .LT.
IF (IUMASK .GT.

END IF
IF (MSKTYP .EQ. 1)

a c t i v e '
1) THEN
inactive or constant head'
2) THEN

i nact i ve'
3) THEN
constant head'

+ 2
0) WRITE (OUNIT,5)
0) WRITE (OUNIT,5)

'greater than zero'
'less than or equal to zero

WRITE (OUNIT,7)

153

c
C2 DETERMINE COMPARISON OPERATOR

IOPR = 0
IF (OPRATR .EQ. '

EQ. 'IF (OPRATR
IF (OPRATR
IF (OPRATR

IF (OPRATR
IF (OPRATR

.OR. OPRATR .EQ. 'EQ') IOPR = 1
OR. OPRATR .EQ. 'NE') IOPR = 2

EQ. '<' .OR. OPRATR .EQ. 'LT') IOPR = 3
EQ. '<=' .OR. OPRATR .EQ. 'LE' .OR. OPRATR

IOPR = 4
EQ. '>' .OR. OPRATR . Eft. 'GT') IOPR = 5
EQ. '>=' .OR. OPRATR .EQ. 'GE' .OR. OPRATR

IOPR = 6

EQ =<')

EQ. '=>')

C
C3

IF (IOPR .EQ. 0) THEN
EXCMD = .FALSE.
WRITE (OUNIT,8) OPRATR
RETURN

END IF

INITIALIZE LAYER RANGE AND BOUNDARY ARRAY POINTERS
NCR = NCOL * NROW
NCRL = NCR * NLAY
IF (IULAY1 .GT. 0) THEN

LAYSTR = IULAY1
LAYEND = IULAY1
LCB1 = 1 + NCR * (IULAY1 - 1)
LAY1 = IULAY1

LENDS = NCRL
ELSEIF (IULAY1 . EQ .

LAYSTR = 1
NLAY
1
1

O) THEN

LAYEND
LCB1
LAY1

ELSE
LAYSTR
LAYEND
LCB1
LAY1

END IF

- 1)

C
C4

IF (IULAY2 .GT. 0) THEN
LAY2 = IULAY2
LCB2 = 1 + NCR * (IULAY2

ELSE
LAY2 = 1
LCB2 = 1

END IF
LAYDIF = LAY2 - LAYl
NMASK = 0

PROCEED WITH THE MASK AND COMPARE
WRITE (OUNIT,9) DSN1,DSN2
NFOUND = O

154

c
C4A PERFORM THE COMPARISON BY LAYER, CHECK FOR MISSING LAYER

DO 3000 K=LAYSTR,LAYEND
K2 = K + LAYDIF
LCLAYl = 1
IPAD = LENDS
CALL ULC1LY (NROW,NCOL,NLAY,DSN1,LCLAYl,OUNIT,K,IOFLG,

1 IPAD,EXCMD)
FASTFF = .FALSE.
IF (.NOT. EXCMD) THEN

EXCMD = .TRUE.
FASTFF = .TRUE.

END IF
LCLAY2 = 1
IPAD = LENDS
CALL ULC1LY (NROW,NCOL,NLAY,DSN2,LCLAY2,OUNIT,K2,IOFLG,

1 IPAD,EXCMD)
IF (FASTFF) THEN

IF (.NOT. EXCMD) THEN
EXCMD = .TRUE.
GOTO 3OOO

END IF
LCLAY2 = LCLAY2 + NCR
GOTO 3OOO

END IF
IF (.NOT. EXCMD) THEN

EXCMD = .TRUE.
LCLAYl = LCLAYl + NCR
GOTO 3OOO

END IF
C
C4B MOVE THROUGH LAYER BY ROW AND COLUMN

DO 2OOO 1=1,NROW
DO 1OOO J=1,NCOL

C
C4B1 MASK HANDLING:
C NO MASK, IMASK, UMASK, IMASK+UMASK

GOTO (50, 20, 30, 1O) MSKTYP
10 IF (IMASKD (IBOUND (LCB1),IBMASK)) GOTO 85O

IF (UMASKD (UBOUND (LCBl),UBMASK)) GOTO 85O
IF (LAYDIF .NE. O) THEN

IF (IMASKD (IBOUND (LCB2),IBMASK)) GOTO 85O
IF (UMASKD (UBOUND (LCB2),UBMASK)) GOTO 85O

END IF
GOTO 5O

20 IF (IMASKD (IBOUND (LCBl),IBMASK)) GOTO 85O
IF (LAYDIF .NE. O) THEN

IF (UMASKD (IBOUND (LCB2),IBMASK)) GOTO 85O
END IF
GOTO 5O

3O IF (UMASKD (UBOUND (LCBl),UBMASK)) GOTO 85O
IF (LAYDIF .NE. O) THEN

IF (UMASKD (UBOUND (LCB2),UBMASK)) GOTO 85O
END IF

5O CONTINUE
DELTA = ABS (ARRAY1 (LCLAYl) - ARRAY2 (LCLAY2))

155

c
C4B2

100

110

120

14O

C
C4B3

800

850
C
C4B4

90O

C
C4B5

COMPARE: EQ, NE, LT, LE, GT, GE
GOTO (100,130,120,120,140,140) IOPR
IF (DELTA .LT. TINY) GOTO 80O
GOTO 90O
IF (DELTA .GT. TINY) GOTO 80O
GOTO 9OO i
IF (ARRAYl (LCLAYl) .LT. ARRAY2 (LCLAY2)) GOTO 80O
IF (IOPR .EQ. 4) GOTO 10O
GOTO 900
IF (ARRAYl (LCLAYl) .GT. ARRAY2 (LCLAY2)) GOTO 8OO
IF (IOPR .EQ. 6) GOTO 10O
GOTO 900

COMPARISON WAS TRUE...PRINT LOCAflON AND VALUES
NFOUND = NFOUND + 1
WRITE (OUNIT,801) I,J,K,ARRAYl(LCLAYl),K2 , ARRAY2(LCLAY2)
GOTO 90O
NMASK = NMASK + 1

FINISHED WITH THIS NODE, ADVANCE POINTERS
LCLAYl = LCLAYl + 1
LCLAY2 = LCLAY2 + 1
LCB1 = LCB1 + 1
LCB2 = LCB2 + 1

IF MAXIMUM NUMBER OF NODES HAS BEEN PRINTED THEN STOP COMPARING
IF (LIMIT GT. O .AND. NFOUND .GT. LIMIT) THEN

WRITE (OUNIT,9000)
GOTO 3001

END IF
1000 CONTINUE
2000 CONTINUE
3000 CONTINUE

3001 CONTINUE
WRITE (OUNIT,9001) NFOUND,NMASK,LENDS
RETURN

1 FORMAT (10X ; 'COMPARISON TEST BYPASS CONDITIONS:',/)
2 FORMAT (/,1OX,' Zero-mask not allowed during comparison command')
3 FORMAT (1OX,'when model boundary nodes are ',A)
4 FORMAT (/,1OX,'User-boundary mask requested, but user boundary '
1 'has not been definedMask ignored',/)

5 FORMAT (1OX,'when user boundary nodes are ',A)
14)6 FORMAT (10X,'when number of nodes passing text exceeds

7 FORMAT ('+',45X,'WERE NOT ENABLED VIA MASK OPTIONS')
8 FORMAT (/,1OX,'Unknown operator: ',A2)
9 FORMAT (//,21X ; 2(' ',A6,' '),/,
1 7X,'ROW',4X,'COLUMN',2(5X,'LAYER',15X,'VALUE'),/)

801 FORMAT (2I1O,2(I1O,G2O.6E3))
9000 FORMAT (/,1OX,'MAXIMUM NUMBER OF TRUE COMPARISONS REACHED',/)
9001 FORMAT (/ ; 10X ; I9 ; ' nodes identified',

1 /,10X,I9,' nodes ignored via mask options',
2 /,10X ; I9,' nodes in data set')
END

156

SUBROUTINE MTH1EX (NCOL,NROW,NLAY,DSNl,DSN2,IULAY1,IULAY2,LCDS1,
1 LCDS2,ARRAYl,ARRAY2,ARRAYS,IOFLG,OPRATR,OUNIT,LENDS,EXCMD)

C
C PERFORM MATHEMATICAL OPERATION ON TWO ARRAYS AND CREATE A THIRD ARRAY
C

DOUBLE PRECISION ARRAYl, ARRAY2, ARRAYS
DIMENSION ARRAYl(NCOL*NROW*NLAY), ARRAY2(NCOL*NROW*NLAY)
DIMENSION ARRAYS(LENDS)
CHARACTER OPRATR*2,DSN1*6,DSN2*6
INTEGER OUNIT,IOFLG(NLAY,2)
LOGICAL EXCMD, FASTFF,SPARS1,SPARS2,SKPLAY

C
Cl DETERMINE IF EITHER DATA SET IS POTENTIALLY SPARSELY LAYERED

SPARS1 = .FALSE.
SPARS2 = .FALSE.

OR. DSNl .EQ. 'DRAWDN' .OR.
DSNl .EQ.

IF ((DSNl .EQ. 'HEAD'
1 DSNl .EQ. 'TOP' .OR
2 SPARS1 = .TRUE.
IF ((DSN2 .EQ. 'HEAD'

1 DSN2 .EQ. 'TOP' .OR
2 SPARS2 = TRUE.

'BOT') .AND. IULAY1 EQ. O)

OR. DSN2 .EQ 'DRAWDN' .OR.
DSN2 .EQ. 'BOT') .AND. IULAY2 .EQ. O)

'AD

EQ.

EQ.

EQ.

EQ.

EQ.

' .OR.

'SU'

'MU'

'DI'

'EX'

'AB'

OPRATR . EQ .

.OR

.OR.

OR

.OR.

.OR.

OPRATR

OPRATR

OPRATR

OPRATR

OPRATR

.EQ.

.EQ.

EQ.

.EQ.

.EQ.

) THEN

>

'*'>

v:
'**
 i i

> THEN

) THEN

) THEN

') THEN

') THEN

C2 DETERMINE OPERATOR TYPE
IF (OPRATR .EQ

IOPR = 1
ELSEIF (OPRATR

IOPR = 2
ELSEIF (OPRATR

IOPR = 3
ELSEIF (OPRATR

IOPR = 4
ELSEIF (OPRATR

IOPR = 5
ELSEIF (OPRATR

IOPR = 6
ELSE

EXCMD = .FALSE.
WRITE (OUNIT, 1) OPRATR
RETURN

ENDIF
C
C3 SET ARRAY POINTERS

IPNT = 1
IPT1 = LCDS1
IPT2 = LCDS2
IPT3 = 1
LAY1 = IULAY1 - 1
LAY2 = IULAY2 - 1
IF (IULAY1 .EQ. O) LAY1 = O
IF (IULAY2 .EQ. 0) LAY2 = 0
LAYS = O
NCR = NCOL * NROW
NCRL = NCR * NLAY

C
C4 COMPUTE THE REQUESTED DATA SET

1OO CONTINUE
IF (IPNT .GT. NCR .OR. IPNT . EQ . 1) THEN

C
C4A SET POINTERS AT THE BEGINNING OF EACH LAYER

IPNT = 1
SKPLAY = .FALSE.
FASTFF = .FALSE.
LAY1 = LAY1 + 1
LAY2 = LAY2 + 1
LAY3 = LAYS + 1

157

c
C4A1 -

C
C4A2 -

C
C4B --

C5

11O

120

130

14O

15O

160

2OO

- ALLOW FOR SPARSELY LAYERED DATA SET 1, SET FLAG
IF (SPARS1) THEN

IPT1 = 1
IPAD = NCRL
CALL ULC1LY (NROW,NCOL,NLAY,DSNl,IPT1,OUNIT,LAYl,IOFLG,
IPAD,EXCMD)

IF (.NOT. EXCMD) THEN
EXCMD = .TRUE. !
FASTFF = .TRUE.

ENDIF !
ENDIF i

- ALLOW FOR SPARSELY LAYERED DATA SET 2, SET FLAG
IF (SPARS2) THEN

IPT2 = 1 !
IPAD = NCRL i
CALL ULC1LY (NROW,NCOL,NLAY,DSN2,IPT2,OUNIT,LAY2,IOFLG,
IPAD,EXCMD)

ENDIF !
IF (FASTFF) THEN

SKPLAY = .TRUE.
IF (EXCMD) THEN

IPT2 = IPT2 + NCR
WRITE (OUNIT,2) LAYS, DSNl

ELSE
EXCMD = .TRUE.

ENDIF
ENDIF
IF (.NOT. EXCMD) THEN

SKPLAY = .TRUE.
EXCMD = .TRUE.
IPT1 = IPT1 + NCR
WRITE (OUNIT,2) LAY3, DSN2

ENDIF
ENDIF

WHEN FLAG SET, SET OUT DATA LAYER TO ZEROES
IF (SKPLAY) THEN

ARRAY3 (IPT3) = O.O
ELSE

PERFORM OPERATION: + ,-,*,,/,**, or | |
GOTO (110, 120, 130, 140, 150, 16O) llflPR
ARRAYS (IPT3) = ARRAY1 (IPTl) + ARRAY2 (IPT2)
GOTO 2OO
ARRAY3 (IPT3) = ARRAY1 (IPTl) - ARRAY2 (IPT2)
GOTO 2OO
ARRAYS (IPT3) = ARRAYl (IPTl) * ARRAY2 (IPT2)
GOTO 200
ARRAYS (IPT3) = ARRAYl (IPTl) / ARRAY2 (IPT2)
GOTO 20O
ARRAYS (IPT3) = ARRAYl (IPTl) ** ARRAY2 (IPT2)
GOTO 200
ARRAYS (IPT3) = ABS (ARRAYl (IPTl))
GOTO 20O
IPTl = IPTl + 1
IPT2 = IPT2 + 1

ENDIF
IPNT = IPNT + 1
IPT3 = IPT3 + 1
IF (IPT3 .LE. LENDS) GOTO 1OO

158

RETURN
1 FORMAT (//,1OX,'Unknown operator: ',A2)
2 FORMAT (1OX, 'PopuI ating layer',13,' with zeroes because ',A6,
1 ' has no corresponding layer')
END

SUBROUTINE REA1CL (LINE,NUCLAS,CLASES,OUNIT,EXCMD)
C
C READ AND STORE USER-SPECIFIED CLASS DATA
C

DIMENSION CLASES(20)
INTEGER OUNIT
CHARACTER LINE*80,ANAME*24
LOGICAL EXCMD
DATA ANAME /'HISTOGRAM CUT POINTS'/

C
Cl READ NUMBER OF CLASSES AND CHECK RANGE

READ (LINE,1,ERR=90) NUCLAS
1 FORMAT (15X,I2)

IF (NUCLAS .LT. 3) THEN
EXCMD = .FALSE.
WRITE (OUNIT,2) NUCLAS

2 FORMAT (/,' Attempted to READ',14,' cut points; minimum =3')
NUCLAS = O
RETURN

ELSEIF (NUCLAS .GT. 20) THEN
EXCMD = .FALSE.
WRITE (OUNIT,3) NUCLAS

3 FORMAT (/,' Attempted to READ',14,' cut points; maximum = 2O')
NUCLAS = O
RETURN

ENDIF
C
C2 READ THE UNIT NUMBER CONTAINING THE CLASSES

READ (LINE,4,ERR=91) INUNIT
4 FORMAT (12X,I2)

C
C3 READ THE CLASSES

CALL U1DREL (CLASES,ANAME,NUCLAS,INUNIT,OUNIT,0)
RETURN

C
90 EXCMD = .FALSE.

WRITE (OUNIT,990) 'Number of cut points', LINE (16:18)
RETURN

91 EXCMD = .FALSE.
WRITE (OUNIT,99O) 'Unit number for reading CLASS', LINE(13:14)
RETURN

99O FORMAT (/,1X,A,' is not an integer: ',A)
END

159

c
Cl

1
&
&
&
&
2
3
4
5
6
7
1
2
3
4

--

'STORAG'

* CNHEAD '
'RIFACE'

' FRFACE '
'LOFACE'
'CBCWEL'

' CBCDRN '
'CBCRIV
1 CBCEVT '
' CBCGHB '
'CBCRCH'
'HEAD',

' DRAWDN '
'WELL' ,
'RECH',

INITIALIZE VA

C
C2
C

C
C3

C
C4

SUBROUTINE REA1DF (DSN,INUNIT , DSTYPE , ANAME,OUNIT,
1 II, 12,13,14 ,15 , 16 ,17 , 18 ,19 , HO , II1 , TEXTEX)

DEFINE MODEL OUTPUT DATA SETS FOR THE READ COMMAND
RETURNS: ARRAY NAME, INPUT UNIT, TYPE, AND EXPECTED TEXT STRING

DOUBLE PRECISION TEXTEX,EXTEXT(15)
INTEGER OUNIT,IPKGUN(11) :
CHARACTER DSN*6 , DSTYPE*3, ANAME*24, NAJMUNI (15) *24, DSNUNI (15) *6
LOGICAL EXCMD
DATA (DSNUNI(I),NAMUNI(I),EXTEXT(I),1=1,15) /

'STORAGE CBC FLOW', ' STORAGE', 1
'CONSTANT HEAD CBC FLOW', 'ANT HEAD', 2
'RIGHT-FACE CBC FLOW', 'HT FACE ', 3
'FRONT-FACE CBC FLOW', 'NT FACE ', 4
'LOWER-FACE CBC FLOW', 'ER FACE ', 5
'WELL CBC FLOW', ' WELLS', 6
'DRAIN CBC FLOW', ' DRAINS', 7
'RIVER CBC FLOW', ' LEAKAGE', 8
'EVAP-TRANS CBC FLOW', ' ET', 9
'GEN-HEAD-BOUND CBC FLOW', 'P BOUNDS', 1O
'RECHARGE CBC FLOW', 'RECHARGE', 11
'COMPUTED HEADS', ' HEAD', 12
'COMPUTED DRAWDOWNS', 'DRAWDOWN', 13
'WELLS', 'NOT USED 5 , 14
1 RECHARGE RATE', 'NOT USED'/ 15

IABLES
DSTYPE = 'XXX'
IPOINT = O
CALL SREA1U (II, 12,13 , 14, 15,16 ,17 , le|, 19 ,110 , 111, IPKGUN)

 - MATCH THE DATA SET NAME WITH UNIT NIJMBER, ARRAY NAME, DATA TYPE,
AND EXPECTED TEXT STRING

DO 1O 1=1,15
IF (DSN .EQ. DSNUNI(I)) THEN

IPNT =1-4
IF (I .LE. 5) IPNT = 1
INUNIT = IPKGUN (IPNT)
IF (ANAME .EQ. '') ANAME = NAMUNI (I)
DSTYPE = '3UR'
TEXTEX = EXTEXT (I)
GOTO 5O

ENDIF
1O CONTINUE

 IF THE DATA SET IS HEAD, DRAWDOWN, PUMPAGE, OR RECHARGE; RESET DATA TYPE
5O IF (DSN .EQ. 'HEAD 5 .OR. DSN .EQ. 'DRAWDN') DSTYPE = 'SUR'

IF (DSN .EQ. 'WELL') DSTYPE = 'WRP'
IF (DSN .EQ. 'RECH') DSTYPE = 'RRP'

 CHECK IF THE DATA SET IS A USER BOUNDARY ARRAY
IF (DSN .EQ. 'UBOUND') THEN

IF (ANAME .EQ. '') ANAME = 'USER BOUNDARY'
ISP = O
ITS = O
DSTYPE = '3FI'
RETURN

ENDIF
RETURN
END

160

SUBROUTINE REA1EX (DSN,DSTYPE,NCOL,NROW,NLAY,INUNIT,EXCMD,OUNIT,
1 LCWELL,MXWELL,NWELLS,LCIRCH,LCRECH,NRCHOP,LCU2DS,LCU3DS,
2 IOFLG t LCUBOU,IWDS,ARRAY,IUSP , IUTS,TEXTEX,IPKGSP,UBIN,ANAME,
3 NOPRT)

C
C EXECUTE READ COMMAND BY CALLING APPROPRIATE DATA SET READING ROUTINE
C DSTYPE (input) = TYPE OF ARRAY READER TO CALL
C DSTYPE (output)= TYPE OF STACK TO BE BUBBLED WHEN EXCMD = .TRUE.
C
$INSERT ZARRAY.COMMON.INS
SINSERT STKSIZE.INS
SINSERT STKDEF.INS

DOUBLE PRECISION TEXTEX
DIMENSION ARRAY (NCOL*NROW*NLAY)
INTEGER LCWDS(2),OUNIT,IOFLG(NLAY,2),IWDS(NCOL*NROW*NLAY)
INTEGER IPKGSP(12)
CHARACTER DSN*6,DSTYPE*3,ANAME*24
LOGICAL EXCMD, UBIN

C
Cl INITIALIZE NUMBER OF CELLS / LAYER, AND NUMBER OF CELLS / SIMULATION

NCR = NCOL * NROW
NCRL = NCR * NLAY

C
C2 -- READ THE PROPER ARRAY, DETERMINED BY ITS TYPE

IF (DSTYPE .EQ. '2FI') THEN
C
C2A 2-DIMENSIONAL, FIXED-FORMAT, INTEGER ARRAY

DSTYPE = '2D'
CALL U2DINT(IWDS,ANAME,NROW,NCOL,O,INUNIT,OUNIT,O)
CALL UXFERI (Z(LCU2DS(ISTKSZ)),IWDS,NCR)

ELSEIF (DSTYPE .EQ. '2FR') THEN
C
C2B 2-DIMENSIONAL, FIXED-FORMAT, REAL ARRAY

DSTYPE = '2D'
CALL U2DREL (ARRAY,ANAME,NROW,NCOL,O,INUNIT,OUNIT,O)
CALL UXFERR (Z(LCU2DS(ISTKSZ)),ARRAY,NCR)

ELSEIF (DSTYPE .EQ. '3FI' .AND. DSN .EQ. 'UBOUND') THEN
C
C2C 3-DIMENSIONAL, FIXED-FORMAT, USER-BOUNDARY ARRAY

DO 2O K=1,NLAY
IPOS = LCUBOU + (K-l) * NCR
CALL U2DINT (Z(IPOS),ANAME,NROW,NCOL,K,INUNIT,OUNIT,O)

2O CONTINUE
UBIN = .TRUE.

ELSEIF (DSTYPE .EQ. '3FI' .AND. DSN .NE. 'UBOUND') THEN
C
C2D 3-DIMENSIONAL, FIXED-FORMAT, INTEGER ARRAY

DSTYPE = '3D'
DO 3O K=1,NLAY

IPOS = 1 + (K-l) * NCR
CALL U2DINT(IWDS(IPOS),ANAME,NROW,NCOL,K,INUNIT,OUNIT,O)

30 CONTINUE
CALL UXFERI (Z(LCU3DS(ISTKSZ)),IWDS,NCRL)

ELSEIF (DSTYPE .EQ. '3FR') THEN
C
C2E 3-DIMENSIONAL, FIXED-FORMAT, REAL ARRAY

DSTYPE = '3D'
DO 50 K=1,NLAY

CALL U2DREL (ARRAY,ANAME,NROW,NCOL,K,INUNIT,OUNIT,O)
IPOS = LCU3DS(ISTKSZ) + (K-l) * NCR * 2
CALL UXFERR (Z(IPOS),ARRAY,NCR)

50 CONTINUE

ELSEIF (DSTYPE .EQ. 'SUR') THEN

161

c
C2F 3-DIMENSIONAL, SPARSELY-LAYERED, UNFORMATTED REAL ARRAY

DSTYPE = '3D'
LAYEND = 0
IF (DSN .EQ. 'HEAD') THEN

J = 1
ELSEIF (DSN .EQ. 'DRAWDN') THEN

J = 2
ELSE

WRITE (DUNIT,2)
EXCMD = .FALSE.
RETURN

END IF
DO 60 1=1,NLAY

IF (IOFLG(I,J) .NE. 0) LAYEND = LAYEND -I- 1
60 CONTINUE

IF (LAYEND .EQ. O) THEN
EXCMD = .FALSE.
WRITE (OUNIT,4) DSN,IUSP,IUTS>
RETURN

END IF
DO 70 K=l,LAYEND

CALL ULYREL (DSN , IUSP,IUTS,INUNIT,ARRAY,NCOL,NROW,
1 NLAY,TEXTEX,PERTIM,TOTIM,OUNJT,EXCMD)

IPOS = LCU3DS(ISTKSZ) -I- (K-l) * NCR * 2
CALL UXFERR (Z(IPOS),ARRAY,NCR)

70 CONTINUE
ELSEIF (DSTYPE .EQ. '3UR') THEN

C
C2G 3-DIMENSIONAL, UNFORMATTED, REALJ ARRAY

DSTYPE = '3D'
CALL U3DREL (DSN,IUSP,IUTS,INUNIT,ARRAY , NCOL,NROW,

1 TEXTEX,NLAY,OUNIT,EXCMD) \
CALL UXFERR (Z(LCU3DS(ISTKSZ)),ARRAY,NCRL)

ELSEIF (DSTYPE .EQ. 'WRP') THEN
C
C2H WELLS

NREAD = IUSP - IPKGSP(2)
IF (NREAD .LE. 0) THEN

IPKGSP(2) = 0
NREAD = IUSP
REWIND (INUNIT)
READ (INUNIT, 3) MXWELL, IW^ELCB

ENDIF
DO 80 N=l,NREAD

CALL WELDRP (NROW,NCOL,NLAY,Z(LCWELL),NWELLS,MXWELL,INUNIT,
1 IPKGSP(2),OUNIT,.FALSE.,NOPRT)

80 CONTINUE
ELSEIF (DSTYPE .EQ. 'RRP') THEN

C
C2I -- RECHARGE

NREAD = IUSP - IPKGSP(8)
IF (NREAD .LE. 0) THEN

IPKGSP(8) = 0
NREAD = IUSP
REWIND (INUNIT)
READ (INUNIT,3) NRCHOP, IRCHCB

ENDIF
DO 90 1=1,NREAD

CALL RCHDRP (NRCHOP,Z(LCIRCH),Z(LCRECH),NROW,NCOL,NLAY,
1 INUNIT,IPKGSP(8),OUNIT,.FALSE.,NOPRT)

90 CONTINUE
ELSE

162

c
C2J UNKNOWN DATA SET TYPE

EXCMD = .FALSE.
WRITE (OUNIT,!) DSN,DSTYPE

END IF
RETURN

1 FORMAT (/,' Data set type for ',A6,' is unknown: ',A3)
2 FORMAT (/, ' Only HEAD or DRAWDN may have data set type SUR')
3 FORMAT (2I1O)
4 FORMAT (/,1X,A,' is not available for reading for stress period',
1 14,', time-step',14,' because save flags are not set')
END

SUBROUTINE SREA1U (II,12,13,14,15,16,17,18,19,HO,111 , IPKGUN)
C
C MEMORY MANAGEMENT TO PUT UNIT NUMBERS INTO AN ARRAY
C FOR LOOKUP WITHIN THE DO-LOOP OF REA1DF

INTEGER IPKGUN(11)
IPKGUN(1) = II
IPKGUN(2) = 12
IPKGUN(3) = 13
IPKGUN(4) = 14
IPKGUN(5) = 15
IPKGUN(6) = 16
IPKGUN(7) = 17
IPKGUN(8) = 18
IPKGUN(9) = 19
IPKGUN(10) = 110
IPKGUN(ll) = 111
RETURN
END

SUBROUTINE SLI1EX (NCOL,NROW,NLAY,COORD,PLANE,UBOUND,
1 DELR,DELC,DELL,OUNIT,EXCMD)

C
C EXECUTE THE 'SLIC'E COMMAND TO GENERATE A USER BOUNDARY BY EITHER TAKING
C A ROW, COLUMN, OR LAYER DIRECTLY FROM THE MODEL GRID (SSLI1Y)
C OR COMPUTING THE PLANAR EQUATION (SSLI1Q) & EXTRACTING THE USER BOUNDARY
C

INTEGER UBOUND (NCOL,NROW,NLAY), OUNIT, COORD(3,3)
DIMENSION PLANE(4), EQ (3,3)
DIMENSION DELR(NCOL),DELC(NROW),DELL(NLAY)
LOGICAL EASY, EXCMD, BONDED

C
Cl PRINT THE SLICING COORDINATES TO USER'S OUTPUT UNIT

WRITE (OUNIT,900) ((COORD(I,J),J=l,3), 1=1,3)
C
C2 INITIALIZE THE USER BOUNDARY & TAKE A SLICE IF THE PROBLEM IS 'EASY'

CALL SSLI1Y (NCOL,NROW,NLAY,COORD,DELR,DELC,DELL,
1 PLANE,UBOUND,EASY,OUNIT,EXCMD)
IF (EASY) THEN

WRITE (OUNIT,901) (PLANE(I),1=1,4)
RETURN

END IF
C
C3 -- TRANSFORM THE GRID CELL COORDINATES TO ENGINEERING UNITS

DO 50 N=l,3
CALL UPOS1G (COORD(N,2),COORD(N,1),COORD(N,3),NROW,NCOL,NLAY,

1 .TRUE.,DELC,DELR,DELL,EQ(N,2),EQ(N,1),EQ(N,3))
50 CONTINUE
C
C4 COMPUTE THE EQUATION OF THE SLICING PLANE

CALL SSLI1Q (EQ,PLANE,OUNIT,EXCMD)
IF (.NOT. EXCMD) RETURN

163

c
C5 EXTRACT THE USER BOUNDARY ARRAY

BONDED = .FALSE.
DO 12O K=1,NLAY !
DO 110 J=1,NROW

C
C5A FIX THE ROW AND LAYER LOCATIONS

CALL UPOS1G (1,J,K,NROW,NCOL,NLAY,
1 .TRUE.,DELC,DELR,DELL,XNODE,YNODE,ZNODE)

C
C5B FIND THE CLOSEST COLUMN LOCATION!

XNODE = (PLANE(4) - PLANE(3) * ZNODE - PLANE(1) * YNODE)
1 / PLANE(2)

CALL UPOS1G (INODE,JNODE,KNODE,NROW,NCOL,NLAY,
1 .FALSE.,DELC,DELR,DELL,XNODE,YNODE,ZNODE)

C
CSC SET THE USER BOUNDARY IF COMPUTED COLUMN IS WITHIN MODEL GRID

IF (INODE .GT. O .AND. INODE .LE, NCOL) THEN
BONDED = .TRUE.
UBOUND (INODE,JNODE,KNODE) = 1

END IF
110 CONTINUE
120 CONTINUE
C
C5 IF NO COORDINATES WERE SLICED BY THE PLANE, THEN AN ERROR HAS OCCURRED

IF (.NOT. BONDED) THEN
EXCMD = .FALSE. ,
WRITE (OUNIT.909)

END IF
WRITE (OUNIT,901) (PLANE(I),1=1,4)
RETURN I

900 FORMAT (1OX,'COMPUTING USER BOUNDARY FROM THE GRID COORDINATES:',//,
1 10X,' ROW COLUMN LAYER',/,
2 10X, ' + + ',/,
3 3(9X,I5,5X,I5,5X,I5,/))

901 FORMAT (//,lOX,'The equation of the slicing plane is:',//,10X,
1 G10.3E2,' * Y + »,G10.3E2,' * X + ',G10.3E2,' * Z = ',
2 G1O.3E2)

9O9 FORMAT (//,lOX,'No model coordinate^ were within the slicing ',
1 'plane') |
END

164

SUBROUTINE SSLI1Y (NCOL,NROW,NLAY,COORD,DELR,DELC,DELL,
1 PLANE,UBOUND,EASY,OUNIT,EXCMD)

C
C USER BOUNDARY (UBOUND) GENERATION ROUTINE: INITIALIZE THE USER UBOUND,
C DETERMINE IF ARRAY CAN BE SLICED ALONG AN EXISTING COLUMN, ROW OR LAYER,
C IF SO, THEN SLICE THE ARRAY AND RETURN THE RESULTANT UBOUNDING ARRAY.
C IF NOT, SET 'EASY' TO FALSE & RETURN.

DIMENSION PLANE(4)
DIMENSION DELR(NCOL), DELC(NROW), DELL(NLAY)
INTEGER OUNIT, COORD(3,3), UBOUND(NCOL,NROW,NLAY)
LOGICAL EXCMD, EASY

SINSERT TINY.INS
EASY = .TRUE.

C
Cl INITIALIZE THE EQUATION OF THE PLANE & THE UBOUND ARRAY TO ZEROES

DO 10 1=1,4
10 PLANE (I) =0.0
100 DO 110 K=1,NLAY

DO 109 1=1,NCOL
DO 108 J=1,NROW

= 0UBOUND(I,J,K)
CONTINUE

CONTINUE

108
109
110
C
C2 CHECK IF UBOUND IS ALIGNED WITH A COLUMN

IF (ABS(COORD(1,1)) .LE. TINY .AND. ABS(COORD(1,3)) .LE. TINY)
1 THEN

I = COORD(1,2)
IF (I .LE. O .OR. I .GT. NCOL) THEN

WRITE (OUNIT,900) 'COLUMN'
GOTO 999

END IF
WRITE (OUNIT,901) 'column',I
DO 106 K=1,NLAY
DO 105 J=1,NROW

105 UBOUND (I,J,K) = 1
106 CONTINUE

CALL UPOS1G (I,1,1,NROW,NCOL,NLAY,.TRUE.,DELC,DELR,DELL,
1 XNODE,YNODE,ZNODE)

PLANE (4) = XNODE
PLANE (2) = 1.0
RETURN

END IF
C
C3 -- CHECK IF UBOUND IS ALIGNED WITH A ROW

IF ((ABS(COORD(1,2)) .LE. TINY .AND. ABS(COORD(1 , 3)) .LE. TINY)
1 .OR. (COORD (1,1) .EQ. COORD(2,1) .AND. COORD(2,1) .EQ. COORD(3,1)
2 .AND. ABS(COORD(1,1)) .GT. TINY)) THEN

J = COORD(1,1)
IF (J .LE. O .OR. J .GT. NROW) THEN

WRITE (OUNIT,900) 'ROW'
GOTO 999

END IF
WRITE (OUNIT,901) 'row',J
DO 116 K=1,NLAY
DO 115 1=1,NCOL

115 UBOUND (I,J,K) = 1
116 CONTINUE

CALL UPOS1G (1,J,l,NROW,NCOL,NLAY,.TRUE.,DELC,DELR,DELL,
1 XNODE,YNODE,ZNODE)

PLANE (4) = YNODE
PLANE (1) = 1.0
RETURN

END IF

165

c
C4 CHECK IF UBOUND IS ALIGNED WITH A LAYER

IF ((ABS(COORD(1,1)) .LE. TINY .AND. ABS(COORD(1,2)) .LE. TINY)
1 .OR.(COORD(1,3) . EQ. COORD(2,3) .AND. COORD(2,3) .EQ. COORD(3,3)
2)) THEN '

K = COORD(1,3)
IF (K .LE. 0 .OR. K .GT. NLAY) THEN

WRITE (OUNIT,900) 'LAYER'
GOTO 999

END IF
WRITE (OUNIT,901) 'layer',K
DO 126 I=1,NCOL
DO 125 J=1,NROW

125 UBOUND (I,J,K) = 1
126 CONTINUE

CALL UPOS1G (1,1,K,NROW,NCOlj,NLAY,.TRUE.,DELC,DELR,DELL,
1 XNODE,YNODE,ZNODE)

PLANE (4) = ZNODE
PLANE (3) = 1.0
RETURN

END IF
C
C5 NO COMMON COORDINATES...SET FLAG TO COMPUTE EQUATION USING SSLI1Q

EASY = .FALSE.
RETURN

999 EXCMD = .FALSE.
RETURN

900 FORMAT (//,1OX,'Specified ',A,' is outside the range of model ',
1 'coord i nates') I

901 FORMAT (//,10X,'User boundary defined by ',A,I3)
END

SUBROUTINE SSLI1Q (A,U,OUNIT,EXCMD)
C
C DETERMINE THE EQUATION OF A SLICING PLANE VIA 3 GRID COORDINATES IN 'A'
C THE COEFFICIENTS OF THE PLANAR EQUATION ARE RETURNED IN THE VECTOR 'B'
C U(l) * X + U(2) * Y + U(3) * Z = U(4)
C

DIMENSION A(3,3), V(2,3), U(4)
INTEGER OUNIT
LOGICAL EXCMD

$INSERT USERS>JSSCOTT>MOD>TINY.INS
C
Cl CALCULATE TWO VECTORS LYING IN THE PLANE

DO 20 1=2,3
DO 10 J=l,3

V (I-1,J) = A (I,J) - A (I-1,J)
10 CONTINUE
20 CONTINUE
C
C2 CALCULATE VECTOR PERPENDICULAR TO THE PLANE (CROSS PRODUCT)

U (1) = V (1,2) * V (2,3) - V (2,2) * V (1,3)
U (2) = V (1,3) * V (2,1) - V (1,1) * V (2,3)
U (3) = V (1,1) * V (2,2) - V (1,2) * V (2,1)

C
C3 FIND THE NORM OF THE PERPENDICULAR VECTOR

UNORM = SQRT (U(1)*U(1) + U(2)*U(2) + U(3)*U(3))

166

C UMIN =O.O
C IF (U (2) .LT. UMIN .AND. ABS (U (2)) .GT. TINY) UMIN = U (2)
C IF (U (3) .LT. UMIN .AND. ABS (U (3)) .GT. TINY) UMIN = U (3)
C
C4 IF ALL COEFFICIENTS ARE ZERO, THEN THE POINTS ARE COLINEAR
C IF (ABS (UMIN) .LE. TINY) THEN

IF (ABS (UNORM) .LE. TINY) THEN
WRITE (OUNIT,900)
EXCMD = .FALSE.
RETURN

ENDIF
C
C5 RESCALE COEFFICIENTS

DO 30 1=1,3
C U (I) = U (I) / UMIN

U (I) = U (I) / UNORM
3O CONTINUE
C
C6 SOLVE FOR RIGHT-HAND SIDE OF THE PLANE EQUATION

U (4) =0.0
DO 4O 1=1,3

U (4) = U (4) + (U (I) * A (1,1))
4O CONTINUE

RETURN
9OO FORMAT (//,' Unable to create user-boundary mask, coordinates',

1 'are coI i nea r')
END

SUBROUTINE VEC1EX (NCOL,NROW,NLAY,LCLOFA,LCFRFA,LCRIFA,UBOUND,
1 LCDELR,LCDELC,LCDELL,LCGRAF,LNGRAF,PLANE,ORIENT,GRFACT,IGUNIT,
2 OUNIT,EXCMD)

C
C COMPUTE FLOW VECTORS, PROJECT ONTO VIEWING PLANE, AND WRITE ORIGIN &
C DESTINATION NODES TO AN OUTPUT DISK FILE IN A FORMAT COMPATIBLE
C WITH THE ARC/INFO 'GENERATE' COMMAND.
C

DIMENSION PLANE (4)
CHARACTER ORIENT*5
INTEGER OUNIT, UBOUND(NCOL,NROW,NLAY)
LOGICAL EXCMD, LOGON
EXTERNAL UXFERD

SINSERT ZARRAY.COMMON.INS
SINSERT TINY.INS
C
Cl CALCULATE NUMBER OF NODES / LAYER, NODES / MATRIX

NCR = NCOL * NROW
NCR2 = NCR * 2
NCRL = NCR * NLAY

C
C2 IF GRAPHIC MULTIPLIER NOT SPECIFIED, SET IT TO UNITY;
C IF GRAPHIC MULTIPLIER IS NEGATIVE, THEN SET FLAG FOR LOGARITHMIC SCALING

IF (ABS(GRFACT) .LE. TINY) GRFACT = l.O
LOGON = .FALSE.
IF (GRFACT .LT. O.O) THEN

GRFACT = ABS (GRFACT)
LOGON = .TRUE.

ENDIF

167

c
C3 WRITE TO THE PRINT FILE A DESCRIPTION OF THE INTERPRETTED COMMAND

WRITE (OUNIT,900) (PLANE(I),1=1,4),tGUNIT,GRFACT
900 FORMAT (//,10X,

1 'FLOW VECTORS COMPUTED FROM CELL BY CELL FLOW TERMS',
2 /,36X,'ON THE PLANE: ',GlO.3E2, ' * Y + ',G10.3E2, ' * X +
3 G10.3E2,' * Z = ',G10.3E2, |
4 /,36X,'WRITTEN TO UNIT: ',13,
5 /,36X,'VECTOR SCALE FACTOR = ',G1O.3E2)
IF (LOGON) THEN

WRITE (OUNIT,9O1) 'BASE-10 LOGARITHMIC'
ELSE

WRITE (OUNIT,901) 'ARITHMETIC'
END IF

901 FORMAT (36X,'VECTORS SHOWN IN ',A, 'I UNITS')
902 FORMAT (36X,'HORIZONTAL AXIS REPRESENTS ',A,

1 /,36X,' VERTICAL AXIS REPRESENTS ',A)
C
C4 SET THE ORIENTATION WHEN SLICE IS ALIGNED WITH LAYER, COLUMN, OR ROW

IF (PLANE(1) .LE. TINY .AND. PLANE(2) .LE. TINY) THEN
ORIENT = 'TOP'

ELSEIF (PLANE(1) .LE. TINY .AND. PLANE(3) .LE. TINY) THEN
ORIENT = 'SIDE'

ELSEIF (PLANE(2) .LE. TINY .AND. PLANE(3) .LE. TINY) THEN
ORIENT = 'FRONT'

END IF
C
C5 DETERMINE THE VIEWING PLANE & SEE IF IT IS CONSISTENT WITH THE SLICE

IF (ORIENT .EQ. 'TOP') THEN
C TOP VIEW (PLAN)

IORENT = 1
IF (ABS(PLANE(3)) .LE. TINY) GOtO 990
WRITE (OUNIT,902) 'COLUMNS','ROWS'

ELSEIF (ORIENT .EQ. 'SIDE') THEN
C SIDE VIEW (RIGHT)

IORENT = 2
IF (ABS(PLANE(2)) .LE. TINY) GOTO 990
WRITE (OUNIT,902) 'ROWS','LAYERp'

ELSEIF (ORIENT .EQ. 'FRONT') THEN
C SIDE VIEW (FRONT)

IORENT = 3
IF (ABS(PLANE(1)) .LE. TINY) GOTO 990
WRITE (OUNIT,902) 'COLUMNS','LAYERS'

ELSE
WRITE (OUNIT,9997) ORIENT

9997 FORMAT (/,' Unknown orientation specified: ',A)
EXCMD = .FALSE.
RETURN

END IF

c
C6 COMPUTE THE EXTENT OF THE Y & 2 DIMENSIONS OF THE MODEL GRID

SUMX =0.0
DO 2 ICOL = 0,NCOL-1

SUMX = SUMX -i- Z (LCDELR + ICOL)
2 CONTINUE

WRITE (OUNIT, 903) 'RIGHT ',SUMX
903 FORMAT (36X,'THE ',A,' EDGE OF THE GRID IS AT \G15.8E2)

SUMY =0.0
DO 4 IROW = O,NROW-1

SUMY = SUMY -i- Z (LCDELC + IROW)
4 CONTINUE

WRITE (OUNIT.903) 'FRONT ',SUMY
SUMZ =0.0
DO 6 ILAY = 0,NLAY-1

SUMZ = SUMZ + Z (LCDELL + ILAY)
6 CONTINUE

WRITE (OUNIT,903) 'BOTTOM',SUMZ
VLMIN = 99E18
GZMIN = 99E18
VLMAX = 0.
NVECT = 0

C
C7 CALCULATE THE UNSCALED LENGTH OF THE ORTHOGONAL VECTORS

DO 100 IPNT = 1,NCRL
C
C7A FIND CURRENT GRID LOCATION & SKIP VALUES NOT ON THE SLICING PLANE

CALL ULC1ND (IPNT,NCOL,NCR,I,J,K)
IF (ABS(UBOUND(J,I,K)) .LT. TINY) GOTO 1OO
NVECT = NVECT + 1
IF (NVECT*4 .GT. LNGRAF) GOTO 991

C
C7B CALCULATE THE AVERAGE OF THE FLOW FACES

IZPNT = (IPNT-1) * 2
RLFACE = UXFERD (Z (LCRIFA + IZPNT))
IF (J .NE. 1) THEN

SPHOLD = UXFERD (Z (LCRIFA + IZPNT -2))
RLFACE = (RLFACE + SPHOLD) / 2.0

END IF
FBFACE = UXFERD (Z (LCFRFA + IZPNT))
IF (I .NE. 1) THEN

SPHOLD = UXFERD (Z (LCFRFA + IZPNT - NCOL * 2))
FBFACE = (FBFACE + SPHOLD) / 2.0

END IF
TLFACE = UXFERD (Z (LCLOFA + IZPNT))
IF (K .NE. 1) THEN

SPHOLD = UXFERD (Z (LCLOFA + IZPNT - NCR2))
TLFACE = (TLFACE + SPHOLD) / 2.O

END IF

169

c
C7C -- CALCULATE THE LENGTH OF THE ORTHOGONAL VECTORS

XL = RLFACE
YL = FBFACE
ZL = TLFACE
KPNT = LCGRAF + (NVECT - 1) * 4

ZL*ZL)

10O

C
C8 --

951

Z(KPNT) = IPNT
Z(KPNT+1) = XL
Z(KPNT+2) = YL
Z(KPNT+3) .= ZL
VL = SQRT (XL*XL +
AL = ABS (VL)
IF (AL .LT. VLMIN)
IF (AL .GT. VLMAX)
IF (AL .LT. GZMIN

YL*YL +

VLMIN =
VLMAX =

. AND . AL

= AL
1
hr

CONTINUE
WRITE (OUNIT,950)

.GT. TINY) GZMIN = AL

'MINIMUM VECTOR', VLMIN, 'MAXIMUM VECTOR', VLMAX

+ 1.5)

=',G11.3E2)

C
C9

C
C9A --
C

C
C9B

C
C9C

DETERMINE THE OFFSET NECESSARY FOR LOG TRANSFORMATION OF VALUES
OFFLOG = ALOG10 (GZMIN)
IF (OFFLOG .LT. O.O .AND. LOGON) THEN

OFFLOG =10. ** AINT (ABS (OFFLOG)
WRITE (OUNIT,951) OFFLOG
FORMAT (38X,' BASE-10 MULTIPLIER

ELSE
OFFLOG =1.O

ENDIF
VSMIN = 99E18 !
VSMAX = O

SCALE THE VECTORS AND PROJECT ONTO THE PLANE
DO 200 JPNT = 1, NVECT

FIND LOCATION, CALCULATE ARITHMETICALLY SCALED LENGTH,
COMPUTE LOGARTHMIC SCALING FACTOR

KPNT = LCGRAF + (JPNT - 1) * 4
IPNT = Z(KPNT) [
CALL ULC1ND (IPNT,NCOL,NCR, I, J,K)
XL = Z(KPNT+1)
YL = Z(KPNT+2)
ZL = Z(KPNT+3)
VL = SQRT (XL*XL + YL*YL + ZL*ZL)
IF (LOGON .AND. VL .GT. TINY) THEN

FACTLG = GRFACT * ALOG10 (VL * OFFLOG) / VL
ELSE

FACTLG = GRFACT
ENDIF
VL = VL * FACTLG
IF (VSMIN .GT. VL) VSMIN = VL
IF (VSMAX .LT. VL) VSMAX = VL

CALCULATE THE END OF THE VECTOR
XI = XL * FACTLG
Yl = YL * FACTLG
Zl = ZL * FACTLG

PROJECT THE VECTOR ONTO THE VIEWING PLANE
CALL UPOS1G (J,I,K,NROW,NCOL,NLAY,.TRUE.,

L Z(LCDELC),Z(LCDELR),Z(LCDELL),DELTAX,DELTAY,DELTAZ)
GOTO (1O,2O,3O) IORENT

> 1

170

c
C9C1 IORENT=1 (' TOP ') => X-DIMENSION IS COLUMNS, Y-DIMENSION IS ROWS
10 CONTINUE

XO = DELTAX
XI = XI + XO
YO = SUMY - DELTAY
Yl = YO - Yl
GOTO 9O

C
C9C2 IORENT=2 ('RIGHT') => X-DIMENSION IS ROWS, Y-DIMENSION IS LAYERS
2O CONTINUE

XO = SUMY - DELTAY
XI = XO - Yl
YO = SUMZ - DELTAZ
Yl = YO - Zl
GOTO 90

C
C9C3 IORENT=3 ('FRONT') => X-DIMENSION IS COLUMNS, Y-DIMENSION IS LAYERS
30 CONTINUE

XO = DELTAX
XI = XI + XO
YO = SUMZ - DELTAZ
Yl = YO - Zl

9O CONTINUE
WRITE (IGUNIT,9000) IPNT,XO,YO,XI,Yl

200 CONTINUE
C
CIO END OF GRID...ALL VECTORS HAVE BEEN WRITTEN.

WRITE (IGUNIT,'(3HEND)')
WRITE (OUNIT,952) NVECT

952 FORMAT(35X,'NUMBER OF VECTORS WRITTEN =',17)
WRITE (OUNIT,95O) 'MINIMUM SCALED', VSMIN, 'MAXIMUM SCALED', VSMAX

950 FORMAT (2(38X,A,' LENGTH =',Gil.3E2,/))
RETURN

C
990 WRITE (OUNIT,9991) ORIENT

9991 FORMAT (/,' Orientation of ',A,' is incompatible with the slice')
EXCMD = .FALSE.
RETURN

991 WRITE (OUNIT,9992)
9992 FORMAT (/,' Insufficient graphic storage available')

EXCMD = .FALSE.
RETURN

9000 FORMAT (HO, 2(/, 2F20 . 4) , / , ' END ')
END

171

SUBROUTINE WRT1EX (NCOL,NROW,NLAY,ARRAY,INUNIT,DSTYPE,
1 LENDS,IULAY,TEXT,KSTP,KPER,OUNIT,EXCMD)

WRITE AN ARRAY TO A DISK FILE

C
Cl

C
C2

DOUBLE PRECISION ARRAY
DIMENSION ARRAY(NCOL,NROW,NLAY)
CHARACTER DSTYPE*3, FMT(20)*20,
LOGICAL EXCMD
INTEGER OUNIT
PARAMETER (CNSTNT=0.0, IPRN=-1,
DATA FMT(l) /' (11G10.3) '/

/'(9G13.6)'/
/'(15F7
/'(15F7
/'(15F7
/'(15F7
/ ' (20F5
/' (20F5
/' (20F5

TEXf*24

IZERO=0)

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

FMT(2)
FMT(3)
FMT(4)
FMT(5)
FMT(6)
FMT(7)
FMT(8)
FMT(9)
FMT(IO)
FMT(ll)
FMT(12)
FMT(13)
FMT(14)
FMT(15)
FMT(16)
FMT(17)
FMT(18)
FMT(19)
FMT(20)

1)
2)
3)
4)
O)
1)
2)

(20F5.3)'/
(20F5.4)'/
(10G11.4)'/
(8G9.0) '/

1)
2)
3)
0)
1) V
2) V
3) V

(8G9
(8G9
(8G9
(8F9
(8F9
(8F9
(8F9

DETERMINE THE FORMAT OF DATA
READ (DSTYPE,1,ERR=900) IP
FORMAT (13)
IF (IP .GT. 20) IP = 0
IF (IP .EQ. O) IP = 12

DETERMINE WHICH LAYER(S)
NCR = NCOL * NROW
IF (IULAY .EQ. 0) THEN

ISTART = 1
IF (LENDS .NE. NCR) THEN

IEND = NLAY
ELSE

IEND = 1
END IF

ELSE
ISTART = IULAY
IEND = IULAY

END IF

TO BE WRITTEN

ARE TO BE WRITTEN

C
C3

C
C3A

50
100

WRITE THE DATA
IF (IP .GT. 0) THEN

WRITE FORMATTED DATA
DO 100 K=ISTART,IEND

WRITE (INUNIT,2) INUNIT,CNSTNT,FMT(IP),IPRN
FORMAT (I10,F10.0,A20,I10)
DO 50 1=1,NROW

WRITE (INUNIT,FMT(IP)) (ARRAY(J,I,K),J=l,NCOL)
CONTINUE

CONTINUE
ELSE

172

c
C3B -- WRITE UNFORMATTED DATA

IHOLD = -INUNIT
DO 200 K=ISTART,IEND

WRITE (OUNIT,3) IHOLD,CNSTNT,IPRN
3 FORMAT(10X,'SAMPLE ARRAY-CONTROL RECORD:',I1O,F10.0,20X,110)

WRITE (INUNIT) KSTP,KPER,IZERO,IZERO,TEXT,NCOL,NROW,K
WRITE (INUNIT) ((ARRAY(J, I, K),J=l,NCOL),1=1,NROW)

200 CONTINUE
END IF
RETURN

C
900 WRITE (OUNIT,901) IP

EXCMD = .FALSE.
901 FORMAT (10X,'InvaI id format code: >,A3)

RETURN
END

SUBROUTINE PRT1EX (NCOL,NROW,NLAY,NCRL,DARRAY,ARRAY,DSTYPE,ANAME,
1 IULAY,LCDS,LENDS,ISP,ITS,OUNIT,EXCMD)

C
C WRITE AN ARRAY IN THE PRINT FILE
C

DOUBLE PRECISION DARRAY
DIMENSION DARRAY(NCRL), ARRAY(NCRL)
CHARACTER DSTYPE*3
INTEGER OUNIT
LOGICAL EXCMD

C
Cl DETERMINE THE FORMAT OF DATA TO BE WRITTEN, CALCULATE NODES / LAYER

READ (DSTYPE,1,ERR=9OO) IP
1 FORMAT (13)

NCR = NCOL * NROW
C
C2 -- PRINT THE DATA BY LAYERS IN THE REQUESTED FORMAT

IF (IULAY .EQ. 0) THEN
ISTART = 1
IF (LENDS .NE. NCR) THEN

IEND = NLAY
ELSE

IEND = 1
END IF

ELSE
ISTART = IULAY
IEND = IULAY

END IF
IPOS = LCDS
DO 200 K=ISTART,IEND

DO ISO 1=1,NCR
ARRAY(I) = DARRAY(IPOS)
IPOS = IPOS + 1

150 CONTINUE
IF (IP .LT. O) THEN

C
C2A WRITE OUT THE DATA IN STRIP FORMAT

CALL ULAPRS (ARRAY,ANAME,ITS,ISP,NCOL,NROW,K,-IP,OUNIT)
ELSE

C
C2B WRITE OUT THE DATA IN WRAP FORMAT

CALL ULAPRW (ARRAY,ANAME,ITS,ISP,NCOL,NROW,K,IP,OUNIT)
END IF

20O CONTINUE
RETURN

173

c
900

901

WRITE (OUNIT,901) IP
EXCMD = .FALSE.
FORMAT (1CX,'Invalid format code:
RETURN
END

',A3)

SUBROUTINE HEA1EX (NCOL,NROW,NLAY,IDFLG,INUNIT,OUNIT,INOC,TEXTEX,
1 ITSOC, NPER, NTS, IOUNIT, NODLST, ARRAYi, EXCMD)

C
C EXTRACT BINARY COMPUTED HEADS FOR SELECTED NODES, AND WRITE TO A FILE
C

DOUBLE PRECISION TEXTEX
INTEGER IOFLG(NLAY,2), NTS(NPER), IROW(6), ICOL(6), ILAY(6)
INTEGER OUNIT
DIMENSION ARRAY(NCOL,NROW,NLAY)
CHARACTER NODLST*72, HDFMT*25
LOGICAL EXCMD

SINSERT MISVAL.INS
DATA HDFMT /'(515,3G15.6E2)'/

C
Cl CALCULATE TOTAL TIME STEPS, DEFINE THE MISSING VALUE INDICATOR,
C AND PRINT COMMAND DESCRIPTION

NUMTS = O
DO 9 1=1,NPER

9 NUMTS = NUMTS + NTS(I)
READ (MISVAL(l),1) UNDEF
WRITE (OUNIT,7) IOUNIT, HDFMT, NUMTS

C
C2 READ, CHECK, AND PRINT LOCATIONS OF NODES WHOSE HEADS ARE TO BE SAVED

NUMNOD = O
ISTART = 1

10 CONTINUE
IEND = ISTART +11
IF (NODLST(ISTART:IEND) .EQ. ' ') GOTO 2O
NUMNOD = NUMNOD + 1
READ (NODLST(ISTART:IEND),2,ERR*9OO)

1 IROW(NUMNOD),ICOL(NUMNOD),ILAY(NUMNOD)
ISTART = IEND + 1
IF (IROW(NUMNOD) .LE. O .OR. IR0W(NUMNOD) .GT. NROW) THEN

WRITE (OUNIT,3) ' Row', NUMNOD, NROW
EXCMD = .FALSE.

END IF
IF (ICOL(NUMNOD) .LE. O .OR. ICOL(NUMNOD) .GT. NCOL) THEN

WRITE (OUNIT,3) ' Column', NUMNOD, NCOL
EXCMD = .FALSE.

END IF
IF (ILAY(NUMNOD) .LE. O .OR. ILAY(NUMNOD) .GT. NLAY) THEN

WRITE (OUNIT,3) ' Layer', NUMNOD, NLAY
EXCMD = .FALSE.

END IF
GOTO 10

20 CONTINUE
IF (.NOT. EXCMD) RETURN
WRITE (OUNIT,8) NUMNOD,(IROW(I),ICOL(I),ILAY(I),1=1,NUMNOD)

C
C3 READ SEQUENTIALLY THROUGH THE COMPUTED HEADS FILE, EXTRACTING DATA

REWIND (INUNIT)
DO 9O ISP = 1,NPER

DO 80 ITS = 1, NTS (ISP)
NUMNOT = O

C
C3A GET THE HEAD SAVE FLAGS FOR THIS STRESS-PERIOD & TIME-STEP

CALL UI01FG (NPER,NLAY,NTS,ISP,ITS,IOFLG,ITSOC,INOC,
1 OUNIT,EXCMD)

174

c
C3B

1
2

60
C
CSC

READ AND STORE THE COMPUTED HEADS IN AN ARRAY
DO 60 L = 1, NLAY

IF (IOFLG(L,1) .NE. O) CALL ULYREL ('HEAD ',ISP,ITS,
INUNIT,ARRAY(1,1,L),NCOL,NROW,NLAY,TEXTEX,PERTIM,TOTIM,
OUNIT,EXCMD)

CONTINUE

FOR EACH NODE REQUESTED,
DO 70 N = 1, NUMNOD

IF (IOFLG(ILAY(N),1)
NUMNOT = NUMNOT +
VALUE

WRITE THE COMPUTED HEAD OR MISSING VALUE

EQ. O) THEN

70

= UNDEF
PEROUT = UNDEF
TOTOUT = UNDEF

ELSE
VALUE = ARRAY (ICOL(N),IROW(N),ILAY(N))
PEROUT = PERTIM
TOTOUT = TOTIM

END IF
WRITE(IOUNIT,HDFMT) IROW(N),ICOL(N),ILAY(N),ISP,ITS,

PEROUT,TOTOUT,VALUE
CONTINUE
IF (NUMNOT .GT. O) WRITE (OUNIT,5> NUMNOT,ISP,ITS

CONTINUE80
90 CONTINUE

RETURN
900 EXCMD = .FALSE.

WRITE (OUNIT,6) NUMNOD
RETURN

1 FORMAT (F10.0)
2 FORMAT (3(13,IX))
3 FORMAT (A,' number ',13,' is less than O or greater than',14)
5 FORMAT (12,* nodes were set to a missing value because their ',
1 'layer(s) was not saved for stress period',14,', time step',14)

6 FORMAT (/,' Non-numeric row, column, or layer for node number',14)
7 FORMAT (//,14X,'WRITING OF : COMPUTED HEADS',
1 /,17X,'ON UNIT : ',12,
2 /,12X,'USING FORMAT : ',A,
3 /,23X,I3,' TIME STEP(S)')

8 FORMAT (24X,I2,« NODES',//,

END

14X,'ROW COLUMN LAYER',
6(/,14X,I3,6X,I3,6X,I3),/)

175

SUBROUTINE REB1EX (NCOL,NROW,NLAY,IOFi_G,IHEDUN,OUNIT,INOC,
1 TEXTEX,ITSOC , NPER,NTS,IUSP , IUTS,IBOUND,HEAD,EXCMD)

C
C RESET THE MODEL BOUNDARY ARRAY FOR CELLS WHICH HAVE GONE DRY DURING SIMULATION
C

DOUBLE PRECISION TEXTEX, TEST, DHEAD
DIMENSION IOFLG (NLAY,2), HEAD (NCOL,NROW,NLAY)
INTEGER IBOUND (NCOL,NROW,NLAY), NTS (NPER), OUNIT
LOGICAL EXCMD
PARAMETER (DHEAD=1.D3O)

$INSERT TINY.INS
C
Cl WRITE DESCRIPTION OF THE INTERPRETED COMMAND LINE

WRITE (OUNIT,!) IUSP, IUTS
C
C2 RETRIEVE THE HEAD-SAVE FLAGS FOR THE REQUESTED STRESS PERIOD & TIME-STEP

CALL UI01FG (NPER,NLAY,NTS,IUSP,IUTS,IOFLG,ITSOC,INOC,
1 OUNIT,EXCMD)
IF (.NOT.EXCMD) THEN

WRITE (OUNIT,2)
RETURN

END IF
C
C3 RETRIEVE COMPUTED HEADS BY LAYER, FOR THE REQUESTED TIME-STEP

NFOUND = 0
DO 10 L=1,NLAY

IF (IOFLG(L,l) .NE. 0) THEN
CALL ULYREL ('HEAD ',IUSP,IUTS,IHEDUN,HEAD(1,1,L),

1 NCOL,NROW,NLAY,TEXTEX,PERTIM,TOTIM,OUNIT,EXCMD)
IF (EXCMD) NFOUND = NFOUND + 1

ELSE
WRITE (OUNIT,3) L, IUSP, IUTS

END IF
10 CONTINUE

IF (NFOUND .EQ. 0) THEN
EXCMD = .FALSE.
WRITE (OUNIT,2)
RETURN

END IF

176

C4 COMPARE EACH VALUE OF COMPUTED HEAD TO THE VALUE SET BY THE
C MODULAR MODEL SUBROUTINE SBCF1H WHEN CELLS GO DRY.

NFOUND = 0
WRITE (OUNIT,4)
DO 40 K=1,NLAY

IF (IOFLG(K,1) .EQ. 0) GOTO 40
DO 30 I=1,NROW

DO 20 J=1,NCOL
THEAD = HEAD(J,I,K)
IF (THEAD .LE. TINY) GOTO 2O
TEST = DHEAD / DBLE (THEAD)
TEST = DABS (1.ODO - TEST)
IF (TEST .LE. TINY) THEN

IBOUND (J,I,K) = 0
WRITE (OUNIT,5) J,I,K
NFOUND = NFOUND + 1

END IF
20 CONTINUE
30 CONTINUE
40 CONTINUE

WRITE (OUNIT,6) NFOUND
RETURN

(//, 14X, 'RESETTING OF
/,9X,'FOR STRESS PERIOD
/,9X,' TIME STEP

1 FORMAT
1
2

2 FORMAT
1

3 FORMAT
1

4 FORMAT
1

MODEL-BOUNDARY ARRAY',
M3,
',13,/)

(/,IX, 'UnabIe to reset mode I-boundary array because
'computed heads were not saved')

(IX, 'Computed heads were not saved for layer: ',13,
', stress period: ',13, ' , time step: ',13)

(7X,'THE FOLLOWING NODES HAVE GONE DRY',//,
14X,'ROW COLUMN LAYER')

5 FORMAT (14X,I3,6X,I3,6X,I3)
6 FORMAT (/,I4,' NODE(S) WENT DRY')

END

SUBROUTINE ULC1DS (NROW,NCOL,NLAY,DSN,IUNIT,OUNIT,IULAY,ARAY3D,
1 LCDS,LENDS,ANAME,EXCMD,U2DDSN,U3DDSN,LCU2DS,LCU3DS,U2DANM,
2 LCRECH,LCIRCH,LCDELC,LCDELR,NRCHOP,LCWELL,MXWELL,NWELLS,
3 U3DANM,LCIBOU,LCSTRT,LCSC1,LCBOT,LCTOP,LCIOFG,FWDSCR,
4 IPKGSP,ISKSP,ISKTS,ISP,ITS,NPER,NTS)

C
C FIND THE LOCATION, LENGTH, AND NAME OF A DATA SET & RETURN INTO ARAY3D
C ARAY3D OCCUPIES Z-ARRAY, BUT THIS IS NOT KNOWN DURING ULC1DS!
C
$INSERT ZARRAY.COMMON.INS
SINSERT STKSIZE.INS
$INSERT STKDEF.INS
C

DOUBLE PRECISION ARAY3D
DIMENSION ARAY3D(NCOL*NROW*NLAY)
CHARACTER DSN*6, ANAME*24
INTEGER IUNIT(24),OUNIT,IPKGSP(12),NTS(NPER)
LOGICAL EXCMD, FWDSCR

C
Cl

C
C1A

- SEARCH FOR A DATA SET NAME BY LOOKING IN EACH OF SEVERAL LOCATIONS
IF (DSN .EQ. 'WELL' .OR. DSN .EQ. 'AREA' .OR.

1 DSN .EQ. 'RECH' .OR. DSN .EQ. 'RECHF') THEN

PUMPAGE, CELL AREA, AND RECHARGE DATA SETS REQUIRE COMPUTATION
CALL ULC1SP (NROW,NCOL,NLAY,IUNIT,DSN,ANAME,IULAY,

1 ARAY3D,LENDS,OUNIT,EXCMD,Z(LCWELL),MXWELL,NWELLS,
2 Z(LCRECH),Z(LCIRCH),Z(LCDELC),Z(LCDELR),Z(LCIBOU),NRCHOP,
3 IPKGSP,ISP,ITS)

IF (.NOT. EXCMD) RETURN

177

c
C1B -- IF NOT COMPUTED, THERE ARE THREE OTHER POSSIBILITIES

ELSE
C
C1B1 IS THE DSN A MODULAR MODEL DATA ARRAY STORED IN A RESERVED LOCATION

CALL USYDUD (NROW,NCOL,NLAY,IUNIT,DSN,LCDS,LENDS,ANAME,
1 LCIBOU,LCSTRT,LCSCI,LCBOT,LCTOP,LCWELL,LCRECH)

IF (LCDS .GT. O) THEN
ISP = O
ITS = Q
GOTO 4O

END IF
C
C1B2 IF STILL NOT FOUND, CHECK IF DATA SET ON ONE OF THE STACKS

IBASE2 = 1E8
IBASE3 = 1E8
DO 20 I=1,ISTKSZ

IF (IBASE2 .GT. LCU2DS(I)) IBASE2 = LCU2DS(I)
IF (IBASE3 .GT. LCU3DS(I)) IBASE3 = LCU3DS(I)

20 CONTINUE
IF (LCDS .LT. O) CALL USKDUD (NROW,NCOL,NLAY,DSN,U2DDSN,

2 U3DDSN, U2DANM, U3DANM, ISKSP, ISK|TS, LCU2DS, LCU3DS, ISKPOS,
3 Z (LCIOFG) , IULAY, LCDS, LENDS, AN/iME, ISP, ITS, FWDSCR, NPER,
4 NTS,IPKGSP(12),IUNIT(12),.FALSE.,Z(IBASE2),IBASE2,
5 Z(IBASE3),IBASE3,ARAY3D)

IF (LCDS .GT. O) GOTO SO
C
C1B3 IF STILL NOT FOUND, CHECK IF DATA SET NAME IS A REAL NUMBER?

IF (LCDS . EQ. O) THEN
READ (DSN,2,ERR=9O) VALUE

2 FORMAT (F6.O)
LENDS = NCOL * NROW * NLAY
IF (IULAY .NE. O) LENDS = NCOL * NROW
DO 5 1=1,LENDS

ARAY3D(I) = VALUE
5 CONTINUE

ANAME = 'CONSTANT VALUE = ' // DSN
ISP = O
ITS = O
LCDS = 1
RETURN

END IF
C
C1B4 STORE THE REQUESTED DATA ARRAY IN ARAY3D

4O CALL UXFERR (ARAY3D,Z(LCDS),LENDS)
ENDIF

C
C2 RESET LOCATION AND LENGTH WHEN USER NEEDS A SPECIFIC LAYER

50 CONTINUE
LCDS = 1
IF (IULAY .GT. O) CALL ULC1LY (NROW,NCOL,NLAY,DSN,LCDS,OUNIT,

1 IULAY,Z(LCIOFG),LENDS,EXCMD)
RETURN

C
C3 DATA SET NOT FOUND IN ANY OF THE POSSIBLE CACHES

90 EXCMD = .FALSE.
WRITE (OUNIT,!) DSN
RETURN

1 FORMAT (1OX,'Data set ',A6,' was requested, but was not found')
END

178

SUBROUTINE ULC1SP (NROW,NCOL,NLAY,IUNIT,DSN,ANAME,IULAY,ARAY3D,
1 LENDS,OUNIT,EXCMD,WELL,MXWELL,NWELLS,RECH,IRCH,DELC,DELR,
2 IBOUND,NRCHOP,IPKGSP,ISP,ITS)

C
C COMPUTE AND RETURN: WELL, AREA, RECH, OR RECHF DATA SETS
C

INTEGER IBOUND(NCOL,NRQW,NLAY),IUNIT(24),OUNIT,IRCH(NCOL,NROW)
INTEGER IPKGSP(12)
DOUBLE PRECISION ARAY3D
DIMENSION ARAY3D(NCOL,NROW,NLAY),RECH(NCQL,NROW),DELC(NROW)
DIMENSION DELR(NCOL),WELL(4,MXWELL)
CHARACTER DSN*6, ANAME*24
LOGICAL EXCMD

C
Cl ~ IF DATA SET NAME IS 'WELL', THEN PREPARE PUMPAGE DATA

IF (DSN .EQ. 'WELL') THEN
CALL USYDUD (NROW,NCOL,NLAY,IUNIT,DSN,LCDS,LENDS,ANAME,

1 1,1,1,1,1,1,1)
IF (LCDS .LE. O) THEN

EXCMD = .FALSE.
WRITE (OUNIT,!) DSN,IUNIT(2)
RETURN

END IF
CALL SWEL1T (NROW,NCOL,NLAY,MXWELL,NWELLS,WELL,IULAY,

1 ARAY3D,LENDS,OUNIT)
ISP = IPKGSP (2)
ITS = 1

C
C2 ~ IF DATA SET NAME IS 'AREA', COMPUTE AREA OF CELLS

ELSEIF (DSN .EQ. 'AREA') THEN
LENDS = NCOL * NROW
ISP = O
ITS = O
ANAME = 'AREA OF CELLS'
DO 120 K=1,NLAY

DO 110 1=1,NCOL
DO 1OO J=1,NROW

ARAY3D (I,J,K) = DELC(J) * DELR(I)
100 CONTINUE
110 CONTINUE
120 CONTINUE
C
C3 IF DATA SET NAME IS 'RECH' OR 'RECHF', THEN PREPARE RECHARGE DATA

ELSE
CALL USYDUD (NROW,NCOL,NLAY,IUNIT,'RECH ',LCDS,LENDS,ANAME,

1 1,1,1,1,1,1,1)
IF (LCDS .LE. O) THEN

EXCMD = .FALSE.
WRITE (OUNIT,!) DSN,IUNIT(8)
RETURN

ENDIF
CALL SRCH1T (NROW,NCOL,NLAY,DSN,LENDS,NRCHOP,IRCH,RECH,

1 ANAME,OUNIT,IULAY,DELC,DELR,ARAY3D,IBOUND)
ISP = IPKGSP (8)
ITS = 1

ENDIF
C

RETURN
1 FORMAT (//,10X,'Data set: ',A6,' not available.
1 ' IUNIT from basic package for data set = ',13)
END

179

SUBROUTINE SWEL1T (NROW,NCOL,NLAY,MXWELL,NWELLS,WELL,IULAY,
\ WELL3D,LENDS,OUNIT)

C i
C TRANSFORM WELL ARRAY TO COMPRESSED 2-D, OR 3-D FOR ANALYSIS
C

DOUBLE PRECISION WELL3D
DIMENSION WELL(4,MXWELL), WELL3D(NCOL,NROW,NLAY)
INTEGER OUNIT

C
Cl INITIALIZE: NUMBER LAYERS TO COMPUTE, WELL ARRAY

IF (IULAY .LT. O) THEN
LENDS = NCOL * NROW

N =1
ELSE

LENDS = NCOL * NROW * NLAY
N = NLAY

END IF
DO 2O K=1,N
DO 2O J=1,NCOL
DO 20 1=1,NROW

WELL3D (J,I,K) = O.O
20 CONTINUE

IF (NWELLS .EQ. O) RETURN
C
C2 CONSTRUCT ARRAY AS PER SPECIFICATION

IF (IULAY .LT. O) THEN
C
C2A COMPRESS SUM OF WELLS TO A SINGLE 2-D LAYER
C lABS(IULAY) mask layer will be u£ed if masking requested

DO 30 M=l,NWELLS
I = WELL (2,M)
J = WELL (3,M)
WELL3D (J,I,1) = WELL3D (J,I,1) + WELL (4,M)

30 CONTINUE
ELSE

C
C2B COMPLETE 3-D WELL ARRAY RETURNED

DO 4O M=l,NWELLS
I = WELL (2,M)
J = WELL (3,M)
K = WELL (1,M)
WELL3D (J,I,K) = WELL (4,M)

40 CONTINUE
END IF
RETURN
END

180

c
Cl

10

SUBROUTINE SRCH1T (NROW,NCOL,NLAY,DSN,LENDS,NRCHOP,IRCH,RECH,
L ANAME,OUNIT,IULAY,DELC,DELR,RECH3D,IBOUND)

TRANSFORM RECHARGE ARRAY TO COMPRESSED 2-D OR 3-D ARRAY
RETURNS RECHARGE RATE WHEN DSN = 'RECH'
RETURNS RECHARGE FLUX WHEN DSN = 'RECHF'

DOUBLE PRECISION RECH3D
DIMENSION RECH3D (NCOL,NROW,NLAY)
DIMENSION RECH(NCOL,NROW),IRCH(NCOL,NROW),DELC(NROW),DELR(NCOL)
DIMENSION IBOUND(NCOL,NROW,NLAY)
INTEGER OUNIT
CHARACTER DSN*6,ANAME*24

INITIALIZE NUMBER OF LAYERS COMPUTED, RECHARGE ARRAY, & NAME
IF (IULAY .GE. O) THEN

LENDS = NCOL * NROW * NLAY
N = NLAY

ELSE
LENDS = NCOL * NROW

N =1
END IF
DO 10 K=1,N
DO 10 1=1,NROW
DO 10 J=1,NCOL

RECH3D(J,I,K) =0.0
CONTINUE
ANAME = 'RECHARGE RATE

C
C2
C
C

C
C2A

20

C
C2B

3O

C
C2C --

40

POPULATE RECHARGE ARRAY WITH RECHARGE RATES
IBOUND IS NOT USED TO IGNORE RECHARGE, UNLIKE: RCH1FM
IBOUND IS ONLY USED TO APPLY RECH TO NEXT LOWER LAYER IN GRID

IF (NRCHOP .EQ. 1 .OR. IULAY .LT. O) THEN

APPLY RECHARGE TO TOP LAYER
DO 20 1=1,NROW
DO 20 J=1,NCOL

RECH3D (J,I,1) = RECH (J,I)
CONTINUE

ELSEIF (NRCHOP .EQ. 2 .AND. IULAY .GE. O) THEN

APPLY RECHARGE TO LAYER SPECIFIED IN IRCH
DO 30 1=1,NROW
DO 30 J=1,NCOL

RECH3D (J,I,IRCH(J,I)) = RECH (J,I)
CONTINUE

ELSEIF (NRCHOP .EQ. 3 .AND. IULAY .GE. O) THEN

APPLY RECHARGE TO HIGHEST ACTIVE LAYER
DO 40 1=1,NROW
DO 40 J=1,NCOL
DO 40 K=1,NLAY

IF (IBOUND(J,I,K) .EQ. O) GOTO 4O
RECH3D (J,I,K) = RECH (J,I)

CONTINUE
END IF

181

c
C3 CONVERT RECHARGE TO VOLUME/UNIT DEPTH, IF DATA SET NAME IS 'RECHF

IF (DSN . EQ. 'RECHV') THEN
ANAME = 'RECHARGE FLUX
DO 5O K=1,N
DO 50 I=1,NROW ,
DO 50 J=1,NCOL

RECH3D (J,I,K) = RECH3D (J,I/K) * DELR(J) * DELC(I)
50 CONTINUE

ENDIF
RETURN
END

182

SUBROUTINE USYDUD (NROW,NCOL,NLAY,IUNIT,DSN,LCDS,LENDS,
1 ANAME,LCIBOU,LCSTRT,LCSCI,LCBOT,LCTOP,LCWELL,LCRECH)

C
C DETERMINE IF MODEL INPUT DATA SET HAS BEEN READ & DESCRIBE IT
C RETURN: LOCATION AND LENGTH IN Z-ARRAY
C WHEN LCDS = 0 : DSN IS SYSTEM, BUT IUNIT = 0
C LCDS < 0 . DSN IS NOT A SYSTEM NAME.
C

CHARACTER DSN*6, ANAME*24
DIMENSION IUNIT(24)

SINSERT FLWCOM.INS
C
Cl INITIALIZE LENGTH OF DATA ARRAY, CALCULATE NUMBER OF NODES

LENDS = 0
NCR = NROW * NCOL
NCRL = NCR * NLAY

C
C2 DETERMINE DESCRIPTIVE NAME, LOCATION, AND LENGTH OF DATA SET

IF (DSN .EQ. 'IBOUND') THEN
ANAME = 'MODEL-BOUNDARY ARRAY '
LCDS = LCIBOU
LENDS = NCRL

ELSEIF (DSN .EQ. 'STRT') THEN
ANAME = 'INITIAL HEADS
LCDS = LCSTRT
LENDS = NCRL

ELSEIF (DSN .EQ. 'SCI') THEN
ANAME = 'PRIMARY STORAGE COEFF.
LCDS = LCSCI
IF (IUNIT(1) .LE. O .OR. LCSCI .EQ. 1) LCDS = 0
LENDS = NCRL

ELSEIF (DSN .EQ. 'BOT') THEN
ANAME = 'LAYER BOTTOM '
LCDS = LCBOT
IF (IUNIT(1) .LE. O) LCDS = O
DO 10 1=1,NLAY

IF (LAYCON(I).EQ.1.OR.LAYCON(I).EQ.3) LENDS=LENDS+NCR
1O CONTINUE

ELSEIF (DSN .EQ. 'TOP') THEN
ANAME = 'LAYER TOP '
LCDS = LCTOP
IF (IUNIT(1) .LE. 0) LCDS = O
DO 20 1=1,NLAY

IF (LAYCON(I).EQ.2.OR.LAYCON(I).EQ.3) LENDS=LENDS+NCR
20 CONTINUE

ELSEIF (DSN .EQ. 'WELL') THEN
ANAME = 'WELL PUMPAGE
LCDS = LCWELL
IF (IUNIT(2) .LE. O) LCDS = 0
LENDS = NCRL

ELSEIF (DSN .EQ 'RECH') THEN
ANAME = 'RECHARGE
LCDS = LCRECH
IF (IUNIT(8) .LE. O) LCDS = O
LENDS = NCRL

ELSE
LCDS = -999

END IF
RETURN
END

183

SUBROUTINE USKDUD (NROW , NCOL, NLAY, DSN, U2DDSN , U3DDSN ,
1 U2DANM , U3DANM , ISKSP , ISKTS , LCU2DS , LCU3DS , ISKPOS , IOFLG , IULAY ,
2 LCDS , LENDS , ANAME , ISP , ITS , FWDSCR , NPER , NTS , ITSOC , INOC , NOCOPY ,
3 STK2D , IBASE2 , STK3D , IBASE3 , ARRAY)

FIND LOCATION OF USER DATA SET ON STACK
RETURNS: LCDS = LOCATION OF BEGINNING OF ARRAY ON Z-ARRAY

ISKPOS = 0: DATA SET NOT FOUND ON ANY STACK
> 0: LOCATION OF USER ARRAY ON STACK
= LENGTH OF ARRAY FOUND
= NAME OF ARRAY
TRUE: SEARCH IS UPWARD THROUGH STACKS
FALSE: SEARCH BEGINS IN STACK POSITION TWO

WHEN
WHEN

LENDS
ANAME

FWDSCR IS
FWDSCR IS

C
C
C
C
C
C
C
C
C
C
SINSERT STKSIZE.INS
SINSERT STKDEF.INS

DOUBLE PRECISION STK2D , STK3D, ARRAY
DIMENSION STK2D(NCOL*NROW*ISTKSZ) , STK3D (NCOL*NROW*NLAY*ISTKSZ)
DIMENSION ARRAY (NCOL*NROW*NLAY)
CHARACTER DSN*6, ANAME*24
INTEGER IOFLG (NLAY, 2) , NTS(NPER)
LOGICAL FWDSCR, CKD , EXCMD, NOCOPY

C
Cl
C

C2 --

C
C3
C
C

CALCULATE NUMBER OF NODES IN A LAYER, INITIALIZE LOCATION OF DATA, AND
NUMBER OF STACK ENTRIES
NCR = NCOL * NROW
NCRL = NCR * NLAY
LCDS = 0

STACK POSITION FOR THE SEARCH

C
C4

SET THE STARTING
IF (FWDSCR) THEN

ISTART = 1
ELSE

ISTART = 2
END IF

SCAN THE NAMES OF THE 2-D STACK FOR THE DATA SET NAME REQUESTED;
IF FOUND, RETURN THE LENGTH, STACK POSTION, LOCATION, DESCRIPTIVE
NAME, STRESS PERIOD, AND TIME STEP

CKD = . FALSE .
I = ISTART

IEND = ISTKSZ I
IF (DSN .EQ. U2DDSN(I)) THEN

LENDS = NCR
ISKPOS = I
LCDS = LCU2DS(I)
ANAME = U2DANM(I)
ISP = 0
ITS = 0
GOTO 50

END IF
1 = 1 + 1
IF (I .LE. IEND) GOTO 5

IF STARTED WITH STACK POSITION TWO, GO BACK & CHECK POSITION ONE
IF (.NOT. FWDSCR .AND. .NOT. CKD) THEN

CKD = .TRUE.
1=1

IEND = 1
GOTO 5

ENDIF

184

c
C5 SCAN THE NAMES OF THE 3-D STACK FOR THE DATA SET NAME REQUESTED,
C IF FOUND, RETURN THE LENGTH, STACK POSTION, LOCATION, DESCRIPTIVE
C NAME, STRESS PERIOD, AND TIME STEP

CKD = .FALSE.
I = ISTART

IEND = ISTKSZ
15 IF (DSN .EQ. U3DDSN(I)) THEN

LENDS = NCRL
ISKPOS = I
LCDS = LCU3DS(I)
ANAME = U3DANM(I)
ISP = ISKSP(I)
ITS = ISKTS(I)
GOTO 50

END IF
1 = 1 + 1
IF (I .LE. IEND) GOTO 15

C
C6 IF STARTED WITH STACK POSITION TWO, GO BACK & CHECK POSITION ONE

IF (.NOT. FWDSCR .AND. .NOT. CKD) THEN
CKD = .TRUE.
1=1

IEND = 1
GOTO 15

END IF
C
C7 WHEN NOT FOUND, SET STACK POSITION TO ZERO,

ISKPOS = O
RETURN

50 CONTINUE
IF (NOCOPY) RETURN

C
C8 COPY THE ARRAY FROM THE APPROPRIATE STACK INTO THE WORK SPACE

IF (LENDS .EQ. NCR) THEN
ISTART = (LCU2DS(ISKPOS) - IBASE2) / 2
DO 10O 1=1, LENDS

IMAT = I + ISTART
ARRAY (I) = STK2D (IMAT)

1OO CONTINUE
ELSE

ISTART = (LCU3DS(ISKPOS) - IBASE3) / 2
DO 200 1=1, LENDS

IMAT = I + ISTART
ARRAY(I) = STK3D (IMAT)

200 CONTINUE
END IF

C
C9 IF NO SPECIFIC LAYER REQUESTED, THEN RETURN THE COMPLETE DATA ARRAY

IF (IULAY .NE. O) RETURN

185

c
CIO

300

400

WHEN DATA SET IS HEAD OR DRAWDOWN, RE-CALCULATE THE LENGTH OF THE ARRAY
IF (DSN .NE. 'HEAD' .AND. DSN .NE. 'DRAWDN') RETURN
CALL UI01FG (NPER,NLAY,NTS , ISP,ITS,IOFLG , ITSOC , INOC,OUNIT,EXCMD)
IF (.NOT.EXCMD) THEN

ISKPOS = 0
RETURN

END IF
IF (DSN .EQ. 'HEAD') THEN

LENDS = 0
DO 3OO 1=1,NLAY

IF (IOFLG(1,1) .NE. O) LENDS * LENDS + NCR
CONTINUE

ELSEIF (DSN .EQ. 'DRAWDN') THEN
LENDS = 0
DO 400 1=1,NLAY ,

IF (IOFLG (1,2) .NE. 0) LENDS 4= LENDS + NCR
CONTINUE

END IF
RETURN
END

SUBROUTINE ULC1LY (NROW,NCOL,NLAY,DSN,LCDS,OUNIT,IULAY,IOFLG,
1 LENDS,EXCMD)

FIND THE LOCATION OF THE SPECIFIED LAYER OFFSET FROM THE BEGINNING OF
THE DATA SET IN THE Z-ARRAY

LCDS (input)
LCDS (output)

LENDS (input)
LENDS (output)

location of beginning of 3-D array
location of beginning of IULAY layer of 3-D array
left unchanged when IULAY is i I legal
length of data set DSN
length of IULAY layer of data set DSN

CHARACTER DSN*6
INTEGER OUNIT, IOFLG(NLAY,2)
LOGICAL EXCMD

SINSERT FLWCOM.INS
C
Cl IF LAYER ZERO IS REQUESTED, THEN TH

IF (IULAY .LT. 1) RETURN
C
C2

COMPLETE ARRAY WILL BE USED

CHECK THAT THE LAYER REQUESTED IS WlTHIN THE LIMITS OF THE SIMULATION
NCR = NCOL * NROW
NCRL = NCR * NLAY

1 .AND.
'TOP' .AND.
'DRAWDN') THEN

IF (LENDS .LT. NCRL .AND. IULAY .GT.
1 DSN .NE. 'BOT' .AND. DSN .NE.
2 DSN .NE. 'HEAD' .AND. DSN .NE.

WRITE (OUNIT,2) DSN, IULAY
RETURN

ENDIF
IF (IULAY .GT. NLAY) THEN

EXCMD = .FALSE.
WRITE (OUNIT,!) DSN, IULAY, NLAY
RETURN

ENDIF
C
C3 COMPUTE THE LOCATION BY OFFSETTING FROM START OF ARRAY

IF (DSN .EQ. 'BOT') THEN

186

c
C3A BOTTOM OF UNIT MAY NOT CONTAIN ALL LAYERS

IF (LAYCON(IULAY) .NE. 1 .AND. LAYCON(IULAY) .NE. 3) THEN
EXCMD = .FALSE.
WRITE (OUNIT,3) DSN, IULAY, IULAY, LAYCON(IULAY)
RETURN

END IF
DO 1O 1=1,IULAY-1
IF (LAYCON(I) .EQ. 1 .OR. LAYCON(I) .EQ. 3)LCDS=LCDS+NCR

10 CONTINUE
ELSEIF (DSN .EQ. 'TOP') THEN

C
C3B TOP OF UNIT MAY NOT CONTAIN ALL LAYERS

IF (LAYCON(IULAY) .NE. 2 .AND. LAYCON(IULAY) .NE. 3) THEN
EXCMD = .FALSE.
WRITE (OUNIT,3) DSN, IULAY, LAYCON(IULAY)
RETURN

END IF
DO 20 1=1,IULAY-1
IF (LAYCON(I) .EQ. 2 .OR. LAYCON(I) .EQ. 3)LCDS=LCDS+NCR

20 CONTINUE
ELSEIF (DSN .EQ. 'HEAD') THEN

C
CSC -- COMPUTED HEADS MAY NOT CONTAIN ALL LAYERS

IF (IOFLG (IULAY,1) .EQ. O) THEN
EXCMD = .FALSE.
J = 3
WRITE (OUNIT,4) DSN,IULAY,IULAY,J,IOFLG(IULAY,1)
RETURN

END IF
DO 30 1=1,IULAY-1

IF (IOFLG (1,1) .NE. O) LCDS = LCDS + NCR
3O CONTINUE

ELSEIF (DSN .EQ. 'DRAWDN') THEN
C
C3D COMPUTED DRAWDOWN MAY NOT CONTAIN ALL LAYERS

IF (IOFLG (IULAY,2) .EQ. O) THEN
EXCMD = .FALSE.
J = 4
WRITE (OUNIT,4) DSN,IULAY,IULAY,J,IOFLG(IULAY,2)
RETURN

END IF
DO 40 1=1,IULAY-1

IF (IOFLG (1,2) .NE. O) LCDS = LCDS + NCR
40 CONTINUE

ELSE
C
C3E ALL OTHER DATA ARRAYS CONTAIN EVERY LAYER

LCDS = LCDS + (IULAY - 1) * NCR
ENDIF
LENDS = NCR
RETURN

1 FORMAT (/,lOX,'Data set ',A6,' layer',13,' is too large.',
1 ' Maximum number of layers =',I3)

2 FORMAT (/,1OX,'Unable to find data set ',A6,', layer',13,
1 ' : two-dimensional; Retaining complete data set')

3 FORMAT (/,lOX,'No ',A6,' layer',13,' exists because LAYCON(',
1 12,') =',I3)

4 FORMAT (/,10X,'No ',A6,' layer',13,' exists because IOFLG(',
1 12,',',12,') =',I3)
END

187

SUBROUTINE MAS1EX (LENDS,NCRL,ARRAY,IULAY,NLAY,IPOINT,
1 EXCMD , UBIN,LCDS,IBMASK,IZMASK,IUMASK,OUNIT , DSN,IBOUND,UBOUND)

C
C APPLY UP TO 3 MASKS TO DATA SET IN ARRAY
C LENDS = NUMBER OF VALUES TO BE MASKED
C IMKPOS = BEGINNING POINT IN MASK ARRAY
C NPTS = NUMBER OF VALUES REMAINING IN ARRAY AFTER MASKING
C

DOUBLE PRECISION ARRAY
DIMENSION ARRAY(NCRL)
INTEGER IBOUND(NCRL),UBOUND(NCRL),IPOINT(NCRL)
INTEGER OUNIT
CHARACTER DSN*6
LOGICAL IMASKD, UMASKD, EXCMD, UBIN
EXTERNAL IMASKD, UMASKD

SINSERT TINY.INS i
C
Cl SET ARRAY POINTERS: IMKPOS & IEND

IF (IULAY . EQ. O) THEN
IMKPOS = O

ELSE
IMKPOS = NCRL * (lABS(IULAY) - 1) / NLAY
WRITE (OUNIT,3) IULAY

ENDIF
IEND = LCDS + LENDS - 1

C
C2 CHECK VALIDITY OF MASK REQUESTS

IF (IUMASK .NE. O .AND. .NOT. UBIN) THEN
IUMASK = O
WRITE (OUNIT,6)

ENDIF
IF (IBMASK .LT. -3 .OR. IBMASK .GT. 3) THEN

WRITE (OUNIT,?) IBMASK
IBMASK = O

ENDIF
IF (IULAY .GT. NLAY) THEN

WRITE (OUNIT,2) IULAY
EXCMD = .FALSE.
RETURN

ENDIF
C
C3 -- APPLY THE MASKS

NULOST = O
NBLOST = O
NZLOST = O
NPTS = O
DO 1O I=LCDS,IEND

IMKPOS = IMKPOS + 1
C
C3A ZERO-MASK APPLICATION

IF (IZMASK .NE. O .AND. ABS(ARRAY(I)) .LT. TINY) THEN
NZLOST = NZLOST + 1
GOTO 10

ENDIF
C
C3B MODEL BOUNDARY MASK APPLICATION

IF (IBMASK .NE. 0) THEN
IF (IMASKD (IBOUND(IMKPOS),IBMASK)) THEN
NBLOST = NBLOST + 1
GOTO 1O
ENDIF

ENDIF

188

c
C3C USER BOUNDARY MASK APPLICATION

IF (IUMASK .NE. O) THEN
IF (UMASKD (UBOUND(IMKPOS),IUMASK)) THEN
NULOST = NULOST + 1
GOTO 1O
END IF

END IF
NPTS = NPTS + 1
ARRAY(NPTS) = ARRAY(I)
IPOINT(NPTS) = IPOINT(I)

10 CONTINUE
C
C4 PRINT A SUMMARY OF THE RESULTS OF THE MASKING PROCESS

WRITE (OUNIT,4) DSN,NPTS,LENDS
IF (IZMASK .NE. O) WRITE (OUNIT,5) NZLOST,

1 'zero
IF (IBMASK .EQ. -3) THEN

WRITE (OUNIT,5) NBLOST,'active or constant head nodes'
ELSEIF (IBMASK .EQ. -2) THEN

WRITE (OUNIT,5) NBLOST,'inactive or active nodes'
ELSEIF (IBMASK .EQ. -1) THEN

WRITE (OUNIT,5) NBLOST,'active nodes'
ELSEIF (IBMASK .EQ. 1) THEN

WRITE (OUNIT,5) NBLOST,'inactive or constant head nodes'
ELSEIF (IBMASK .EQ. 2) THEN

WRITE (OUNIT,5) NBLOST,'inactive nodes'
ELSEIF (IBMASK .EQ. 3) THEN

WRITE (OUNIT,5) NBLOST,'constant head nodes'
END IF
IF (IUMASK .GT. O) WRITE (OUNIT,5) NULOST,

1 'outside the user boundary '
IF (IUMASK .LT. O) WRITE (OUNIT,5) NULOST,

1 'inside the user boundary '
C
C5 RESET THE BEGINNING ARRAY POINTER AND THE ARRAY LENGTH COUNTER

LENDS = NPTS
LCDS = 1
IF (LENDS .EQ. O) EXCMD = .FALSE.
RETURN

C
2 FORMAT (1OX, 'II IegaI layer specified: ',13,' for masking')
3 FORMAT (1OX,'Beginning mask from layer',13)
4 FORMAT (/,1OX,'Masking was performed on ',A6,//,
1 I1O,' points remain out of',I9,/)

5 FORMAT (HO, ' points excluded that were ' , A)
6 FORMAT (/,1OX,'User-boundary mask requested, but user boundary
1 'has not been defined....Mask ignored')

7 FORMAT (/,1OX, 'InvaI id value for mode I-boundary mask: ',12,
1 'Mask ignored')
END

189

SUBROUTINE MAS1MV (LENDS,NCRL,NCR,ARRAY,IULAY,NLAY,EXCMD,IOFLG,
1 UBIN,LCDS,IBMASK,IZMASK,IUMASK,OUNIT,DSN,IBOUND,UBOUND,MISSTR)

C
C APPLY UP TO 3 MASKS TO DATA SET IN ARRAY & REPLACE W/ MISSING INDICATORS
C LENDS = LENGTH OF DATA SET
C IMKPOS = BEGINNING POINT IN MASK ARRAY
C NPTS = NUMBER OF VALUES REMAINING IN ARRAY AFTER MASKING
C

DOUBLE PRECISION ARRAY
DIMENSION ARRAY (NCRL)
INTEGER IBOUND(NCRL), UBOUND(NCRL), IOFLG(NLAY,2)
INTEGER OUNIT
CHARACTER DSN*6, MISSTR*3O
LOGICAL IMASKD, UMASKD, EXCMD, UBIN
EXTERNAL IMASKD, UMASKD

SINSERT FLWCOM.INS
$INSERT TINY.INS
SINSERT MISVAL.INS
C
Cl ~ SET ARRAY POINTERS: LAYER, IMKPOSJ & ISTOP

IF (IULAY .EQ. O) THEN
LAYER = O
IMKPOS = O

ELSE
LAYER = IULAY - 1
IMKPOS = NCRL * (lABS(IULAY) - 1) / NLAY
WRITE (OUNIT,3) IULAY

ENDIF
ISTOP = LCDS + LENDS - 1

C
C2 CHECK FOR VALIDITY OF MASK REQUESTS

IF (IUMASK .NE. O .AND. .NOT. UBIN} THEN
IUMASK = O
WRITE (OUNIT,6) j

ENDIF
IF (IBMASK .LT. -3 .OR. IBMASK .GTL 3) THEN

WRITE (OUNIT,7) IBMASK
IBMASK = O !

ENDIF
IF (IULAY .GT. NLAY) THEN

WRITE (OUNIT,2) IULAY [
EXCMD = .FALSE.
RETURN

ENDIF
C
C3 DETERMINE THE MISSING VALUE INDICATORS

9O CONTINUE
DO 10O I = 1, 3

ISTART = 1 + (1-1) * 1O
IEND = I * 10
IF (MISSTR(ISTART:IEND) .EQ. ' ') THEN

READ (MISVAL(I) ,1) MISING(I)
ELSE

READ (MISSTR(ISTART.IEND),1,ERR=9000) MISING(I)
ENDIF

100 CONTINUE

190

c
C4 DETERMINE IF ARRAY IS 'SPARSELY' LAYERED

IF (DSN .EQ. 'TOP') THEN
IGO = 2

ELSEIF (DSN .EQ. 'BOT') THEN
IGO = 3

ELSEIF (DSN .EQ. 'HEAD') THEN
IGO = 4

ELSEIF (DSN .EQ. 'DRAWDN') THEN
IGO = 5

ELSE
IGO = 1

ENDIF
C
C5 APPLY THE MASKS

NULOST = O
NBLOST = O
NZLOST = O
NSLOST = O
NPTS = O
DO 1OOO I=LCDS,ISTOP

C
C5A CALCULATE MASK POSITION AND LAYER

IMKPOS = IMKPOS + 1
IF (MOD(I-1,NCR) .EQ. O) LAYER = LAYER + 1

C
C5B -- CHECK FOR EXISTENCE OF LAYER WHEN 'SPARSELY' LAYERED

GOTO (9OO,400,5OO,6OO,7OO) IGO
C
C5B1 DETERMINE IF LAYER DOES NOT EXIST FOR A 'TOP' LAYER NUMBER (IGO=2)

4OO CONTINUE
IF (LAYCON(LAYER) .NE. 2 .AND. LAYCON(LAYER) .NE. 3) GOTO 8OO
GOTO 900

C
C5B2 DETERMINE IF LAYER DOES NOT EXIST FOR A 'BOT' LAYER NUMBER (IGO=3)

500 CONTINUE
IF (LAYCON(LAYER) .NE. 1 .AND. LAYCON(LAYER) .NE. 3) GOTO 8OO
GOTO 900

C
C5B3 -- DETERMINE IF LAYER DOES NOT EXIST FOR A 'HEAD' LAYER NUMBER (IGO=4)

600 CONTINUE
IF (IOFLG (LAYER,!) .EQ. O) GOTO 8OO
GOTO 900

C
C5B4 DETERMINE IF LAYER DOES NOT EXIST FOR A 'DRAWDN' LAYER NUMBER (IGO=5)

TOO CONTINUE
IF (IOFLG (LAYER,2) .EQ. O) GOTO 8OO
GOTO 9OO

C
C5B5 LAYER DOES NOT EXIST, SET VALUE TO MISSING INDICATOR #1

8OO CONTINUE
ARRAY (I) = MISING (1)
NZLOST = NZLOST + 1
NSLOST = NSLOST + 1
GOTO 1000

C
CSC LAYER EXISTS (IGO=1)

90O CONTINUE
C
C5C1 -- ZERO-MASK APPLICATION

IF (IZMASK .NE. O .AND. ABS(ARRAY(I)) .LT. TINY) THEN
NZLOST = NZLOST + 1
ARRAY(I) = MISING(1)
GOTO 1OOO

ENDIF

191

c
C5C2 MODEL BOUNDARY MASK APPLICATION

IF (IBMASK .NE. O) THEN
IF (IMASKD (IBOUND(IMKPOS),IBMASK)) THEN

NBLOST = NBLOST + 1
ARRAY(I) = MISING(2)
GOTO 1OOO

END IF
ENDIF

C
C5C3 USER BOUNDARY MASK APPLICATION

IF (IUMASK .NE. O) THEN
IF (UMASKD (UBOUND(IMKPOS),IUMASK)) THEN

NULOST = NULOST + 1
ARRAY(I) = MISING(3)
GOTO 1000

ENDIF
ENDIF
NPTS = NPTS + 1

1OOO CONTINUE
C
C6 PRINT A SUMMARY OF THE RESULTS OF THE MASKING PROCESS

WRITE (OUNIT,4) DSN,NPTS,LENDS
IF (IZMASK .NE. O) WRITE (OUNIT,5) NZLOST,

1 'zero '

IF (IBMASK .EQ. -3) THEN
WRITE (OUNIT,5) NBLOST, 'active or constant head nodes'

ELSEIF (IBMASK .EQ. -2) THEN
WRITE (OUNIT,5) NBLOST,'inactive or active nodes'

ELSEIF (IBMASK .EQ. -1) THEN
WRITE (OUNIT,5) NBLOST,'active nodes'

ELSEIF (IBMASK .EQ. 1) THEN
WRITE (OUNIT,5) NBLOST,'inactive or constant head nodes'

ELSEIF (IBMASK .EQ. 2) THEN
WRITE (OUNIT,5) NBLOST,'inactive nodes'

ELSEIF (IBMASK .EQ. 3) THEN
WRITE (OUNIT,5) NBLOST,'constant head nodes'

ENDIF
IF (IUMASK .GT. O) WRITE (OUNIT,5) NULOST,

1 'outside the user boundary '
IF (IUMASK LT. O) WRITE (OUNIT,5) NULOST,

1 'inside the user boundary '
IF (IGO .GT. 1) WRITE (OUNIT,5) NSLOST,

1 'on a non-existent layer (included in zero-mask total)'
RETURN

C
9OOO WRITE (OUNIT,8) I, MISSTR(ISTART:IEND), MISVAL(I)

MISSTR(ISTART:IEND) = ' '
GOTO 9O

1 FORMAT (F10.0)
2 FORMAT (10X, 'II legal layer specified: ',13,' for masking')
3 FORMAT (1OX,'Beginning mask from ljayer',13)
4 FORMAT (/,1OX,'Masking was performed on ',A6,//,
1 I1O,' values unmasked out of',I9,/)

5 FORMAT (I1O,' points masked that were ',A)
6 FORMAT (/,1OX,'User-boundary mask requested, but user boundary
1 'has not been defined....Mask ignored')

7 FORMAT (/,1OX, 'InvaI id value for mode I-boundary mask: ',12,
1 'Mask ignored')

8 FORMAT (/,10X,'IIlegaI missing-value indicator #',11,': ',A,
1 /,1OX,' Set to default indicator: ',A)
END

192

LOGICAL FUNCTION UMASKD (MASK,MASKEY)
C
C DETERMINE IF MASK VALUE REPRESENTS A MASK: (TRUE)
C BASED UPON THE ACTION SPECIFIED BY THE MASKEY
C
C TRUTH-TABLE | MASKEY < O MASKEY = 0 MASKEY > O
C + - + +
C MASK <= O | FALSE FALSE TRUE
C +
C MASK > O | TRUE FALSE FALSE
C

UMASKD = .FALSE.
IF (MASKEY) 10,40,20

1O IF (MASK) 4O,4O,30
20 IF (MASK) 30,30,40
30 UMASKD = TRUE.
4O RETURN

END

LOGICAL FUNCTION IMASKD (MASVAL,MASKEY)
C
C DETERMINE WHETHER A MASK HAS OCCURRED USING A MASK KEY AND THE MODEL BOUNDARY
C
Cl ASSUME THE VALUE IS UNMASKED, THEN FIND CORRECT MASK KEY

IMASKD = .FALSE.
C
C1A UNMASKED IF INACTIVE MODEL NODE

IF (MASKEY .EQ. -3) THEN
IF (MASVAL .EQ. O) RETURN

C
C1B UNMASKED IF CONSTANT HEAD NODE

ELSEIF (MASKEY .EQ. -2) THEN
IF (MASVAL .LT. O) RETURN

C
C1C UNMASKED IF INACTIVE OR CONSTANT HEAD NODE

ELSEIF (MASKEY .EQ. -1) THEN
IF (MASVAL .LE. O) RETURN

C
C1D ALL NODES UNMASKED

ELSEIF (MASKEY .EQ. O) THEN
RETURN

C
C1E UNMASKED IF ACTIVE NODE

ELSEIF (MASKEY .EQ. 1) THEN
IF (MASVAL -GT. O) RETURN

C
C1F UNMASKED IF ACTIVE OR CONSTANT HEAD NODE

ELSEIF (MASKEY .EQ. 2) THEN
IF (MASVAL .NE. O) RETURN

C
C1G UNMASKED IF ACTIVE OR INACTIVE NODE

ELSEIF (MASKEY .EQ. 3) THEN
IF (MASVAL .GE. O) RETURN

ENDIF
C
C2 VALUE HAS BEEN MASKED

IMASKD = .TRUE.
RETURN
END

193

SUBROUTINE UBUBLE (LCSTK,DSNSTK,NAMSTK,ISPSTK , ITSSTK,CMD,
1 FLAG3D,OUNIT,DSNNEW,NAMNEW,ISPNEW,ITSNEW)

C
C BUBBLE THE STACK DSN'S, LOCATIONS, AND DESCRIPTORS
C
SINSERT STKSIZE.INS i

INTEGER LCSTK(ISTKSZ),ISPSTK(ISTKS^),ITSSTK(ISTKSZ),OUNIT
CHARACTER DSNSTK(ISTKSZ)*6,NAMSTK(}STKSZ)*24,DSNNEW*6,NAMNEW*24
LOGICAL FLAG3D

C
Cl -- WRITE AN INFORMATIONAL MESSAGE, AND| SAVE LOCATION OF LAST STACK POSITION

IF (FLAG3D) THEN
WRITE (OUNIT,!) 'THREE', CMD

ELSE
WRITE (OUNIT,!) ' TWO',CMD

END IF
LCTEMP = LCSTK(ISTKSZ) j

C
C2 MOVING DOWNWARD THROUGH THE STACK, SHIFT THE LOCATION, NAME, AND
C DESCRIPTION OF EACH ARRAY UPWARD ONE STACK POSITION.
C IF 3-D STACK, ALSO MOVE STRESS-PERIOD AND TIME-STEP UPWARD.

DO 10 I=ISTKSZ-1,1,-1
J = I + 1
LCSTK(J) = LCSTK(I) I
DSNSTK(J) = DSNSTK(I)
NAMSTK(J) = NAMSTK(I)
IF (FLAG3D) THEN

ISPSTK(J) = ISPSTK(I)
ITSSTK(J) = ITSSTK(I)
WRITE (OUNIT,2) J,DSNSTK(J),ISPSTK(J),ITSSTK(J),NAMSTK(J)

ELSE f
WRITE (OUNIT,3) J,DSNSTK(J),NAMSTK(J)

END IF
10 CONTINUE

C
C3 PUT LOCATION OF SAVED STACK POSITION INTO THE BOTTOM PLACE-HOLDER,
C AND COPY THE NAME, DESCRIPTION, (4 IF 3-D: STRESS-PERIOD & TIME-STEP)
C OF THE NEW DATA ARRAY INTO THE FIRST STACK POSITION.

LCSTK(1) = LCTEMP
DSNSTK(1) = DSNNEW
NAMSTK(1) = NAMNEW
IF (FLAG3D) THEN

ISPSTK(1) = ISPNEW
ITSSTK(1) = ITSNEW
WRITE (OUNIT,2) 1,DSNSTK(1),ISPSTK(1),ITSSTK(1),NAMSTK(1)

ELSE
WRITE (OUNIT,3) 1,DSNSTK(1),NAMSTK(1)

END IF
RETURN

1 FORMAT (//,7X,A5,'-DIMENSIONAL STACK CONTENTS AFTER ',A4,
1 ' COMMAND',//,! IX, 'STACK DATA SET STRESS TIME',/,1OX,
2 'POSITION NAME PERIOD STEP DESCRIPTION',/)

2 FORMAT (14X,I1,5X,A6,4X,I2,4X,I2,2X / A24)
3 FORMAT (14X, II, 5X, A6, 4X, ' *,4X, ' J ,2X,A24)

END

194

CHARACTER*6 FUNCTION UTRMUP (STRING,LEN)
CHARACTER STRING*6, HOLD*6
PARAMETER (ILCA=97,ILCZ=122,IOFSET=32)
INTRINSIC CHAR, ICHAR

C
Cl COPY INPUT STRING, FIND 1ST NON-BLANK CHARACTER FROM RIGHT END

HOLD = STRING(1:LEN)
DO 10 I=LEN,1,-1

IF (HOLD(I:I) .NE. ' ') GOTO 2O
1O CONTINUE

UTRMUP = ' '
RETURN

C
C2 FIND 1ST NON-BLANK CHARACTER FROM LEFT END, CONVERT LOWER TO UPPER-CASE

20 L = O
K = O
DO 3O J=1,I

IF (HOLD(J:J) .EQ. ' ') THEN
IF (K .EQ. O) L = J

ELSE
K = 1
1C = MOD (ICHAR (HOLD(J:J)) ,128)
IF (1C .GE. ILCA .AND. 1C .LE. ILCZ) THEN

1C = 1C - IOFSET
HOLD (J:J) = CHAR (1C)

ENDIF
END IF

30 CONTINUE
C
C3 REMOVE LEADING BLANKS AND RETURN LEFT-JUSTIFIED, UPPER-CASE STRING

UTRMUP = HOLD (L+l:I)
RETURN
END

SUBROUTINE ULC1ND (LCPT,NCOL,NCR,I,J,K)
C
C FINDS LOCATION IN GRID FROM STORAGE LOCATION IN MATRIX
C
Cl CALCULATE LAYER

IRND = MOD (LCPT,NCR)
K = LCPT / NCR

IF (IRND .NE. O) K = K + 1
C
C2 CALCULATE ROW

ITOP = LCPT - (K-l) * NCR
I = ITOP / NCOL

C
C3 CALCULATE COLUMN

IRND = MOD (ITOP,NCOL)
IF (IRND .NE. O) 1=1+1

J = LCPT - ((K-l) * NCR + (1-1) * NCOL)
RETURN
END

195

SUBROUTINE UPOS1G (INODE,JNODE,KNODE,NROW,NCOL,NLAY,FWD,
1 DELC,DELR,DELL,XNODE , YNODE,ZNODE)

C
C CALCULATE ENGINEERING UNITS FROM GRID CELL LOCATION (FWD=TRUE)
C OR: GRID CELL LOCATION FROM ENGINEERING UNITS (FWD=FALSE)
C
C INODE = MODEL GRID COLUMN XNODE = ENGINEERING UNITS EAST
C JNODE = MODEL GRID ROW YNODE = ENGINEERING UNITS SOUTH
C KNODE = MODEL GRID LAYER ZNODE = ENGINEERING UNITS DOWN
C

DIMENSION DELC(NROW), DELR(NCOL), DELL(NLAY)
LOGICAL FWD

C
Cl FORWARD CALCULATION FROM MODEL GRID TO ENGINEERING UNITS

IF (FWD) THEN
C
C1A CALCULATE THE DISTANCE EAST

XNODE = DELR (INODE) / 2.0
DO 10 1=1,INODE-1

10 XNODE = XNODE + DELR (I)
C
C1B CALCULATE THE DISTANCE SOUTH

YNODE = DELC (JNODE) / 2.O
DO 20 1=1,JNODE-1

20 YNODE = YNODE + DELC (I)
C
C1C CALCULATE THE DISTANCE DOWN

ZNODE = DELL(KNODE) / 2.0
DO 30 1=1,KNODE-1

30 ZNODE = ZNODE + DELL (I)
C
C2 REVERSE CALCULATION FROM ENGINEERING UNITS TO MODEL GRID

ELSE
C
C2A CALCULATE THE NUMBER OF CELLS EAST

HOLD = 0.
PRIOR = 0.
DO 110 1=1,NCOL

POINT = HOLD -I- DELR (I) / 2.0
IF (POINT .GT. XNODE) GOTO 115
PRIOR = POINT

110 HOLD = POINT + DELR (I) / 2.0
INODE = NCOL
IF (XNODE .GT. HOLD) INODE = INODE + 1
GOTO 118

115 DIFF1 = XNODE - PRIOR
DIFF2 = POINT - XNODE
INODE = I
IF (DIFF1 .LT. DIFF2 .AND. INODE .NE. 1) INODE =1-1

C
C2B CALCULATE THE NUMBER OF CELLS SOUTH
118 HOLD = O.

PRIOR = O.
DO 120 1=1,NROW

POINT = HOLD + DELC (I) / 2.0
IF (POINT .GT. YNODE) GOTO 125
PRIOR = POINT

120 HOLD = POINT + DELC (I) / 2.O
JNODE = NROW
IF (YNODE GT. HOLD) JNODE = JNODE + 1
GOTO 128

125 DIFF1 = YNODE - PRIOR
DIFF2 = POINT - YNODE
JNODE = I
IF (DIFF1 .LT. DIFF2 .AND. JNODE .NE. 1) JNODE =1-1

196

c
C2C -- CALCULATE THE NUMBER OF CELLS DOWN
128 HOLD = 0.

PRIOR = 0.
DO 130 1=1,NLAY

POINT = HOLD + DELL (I) / 2.0
IF (POINT .GT. ZNODE) GOTO 135
PRIOR = POINT

130 HOLD = POINT + DELL (I) / 2.0
KNODE = NLAY
IF (ZNODE .GT. HOLD) KNODE = KNODE + 1
RETURN

135 DIFF1 = ZNODE - PRIOR
DIFF2 = POINT - ZNODE
KNODE = I
IF (DIFF1 .LT. DIFF2 .AND. KNODE .NE. 1) KNODE =1-1

END IF
RETURN
END

SUBROUTINE U3DREL (DSN,KPER,KSTP,IBDCHN,BUFF,NCOL,NROW,
1 TEXTEX,NLAY,OUNIT,EXCMD)

C
C 3-DIMENSIONAL UNFORMATTED ARRAY READER FOR MODEL POST-PROCESSING
C

CHARACTER DSN*6
DOUBLE PRECISION TEXTEX, TXTFND
DIMENSION TEXT(4),BUFF(NCOL , NROW,NLAY)
INTEGER OUNIT
LOGICAL EXCMD, TRIP
EQUIVALENCE (TXTFND,TEXT(3))

C
Cl SET FLAG AND READ HEADER FROM FILE

TRIP = .FALSE.
10 READ (IBDCHN,ERR=98,END=99) IKSTP,IKPER,TEXT,INCOL,INROW,INLAY

C
C2 CHECK FOR ILLEGAL ARRAY SIZE WHICH COULD DESTROY STACK CONTENTS

IF (INCOL.NE.NCOL .OR. INROW.NE.NROW .OR. INLAY.NE.NLAY) THEN
EXCMD = .FALSE.
WRITE (OUNIT,1) DSN,IBDCHN,INROW,INCOL,INLAY,NROW,NCOL,NLAY

1 FORMAT (' Array size error occurred reading ',A6,' on unit',
1 I3,/,> SIZE READ SIZE EXPECTED',
2 /,' NROW NCOL NLAY NROW NCOL NLAY',/,315,4X,315)

RETURN
END IF

C
C3 READ THE ARRAY INTO A BUFFER

READ (IBDCHN,ERR=98,END=99) BUFF
C
C4 IF STRESS-PERIOD & TIME-STEP WERE LESS THAN THE ONE REQUESTED, OR
C DATA SET TEXT DOES NOT AGREE WITH THE EXPECTED TEXT, THEN KEEP READING

IF((IKPER.LT.KPER .OR. (IKPER.EQ.KPER .AND. IKSTP.LT.KSTP)) .OR.
1 (IKPER.EQ.KPER .AND. IKSTP.EQ.KSTP .AND. TXTFND.NE.TEXTEX))THEN

WRITE (OUNIT,2) (TEXT(I),1=1,4),IKPER,IKSTP
2 FORMAT (/,10X,' > FAST-FORWARDING... ',
1 ' found ',4A4,': stress period',13,', time step',13)

GOTO 10
END IF

C
C5 -- FOUND THE CORRECT DATA SET

IF(IKSTP.EQ.KSTP .AND. IKPER.EQ.KPER .AND. TEXTEX.EQ.TXTFND)RETURN
IF (TRIP) THEN

197

c
C6 ALREADY REWOUND THIS UNIT ONCE, ABORT

EXCMD = .FALSE.
WRITE (OUNIT,3) DSN , IBDCHN , IKPER,IKSTP,KPER , KSTP

3 FORMAT (/,' Error occurred reading ',A6,' on unit',13,
1 /, ' FOUND: stress per i od ' , Ij3, ' time step ',13,
2 /,' EXPECTED: stress period',13,' time step',13)

RETURN
ENDIF

C
C7 PAST THE REQUESTED STRESS PERIOD & TIME STEP, REWIND & TRY AGAIN
20 TRIP = .TRUE.

WRITE (OUNIT,4) IBDCHN
4 FORMAT (/,1OX,' > REWINDING UNIT ',13)

REWIND (IBDCHN)
GOTO 10

C
98 WRITE (OUNIT,5) IBDCHN

EXCMD = .FALSE.
5 FORMAT (' U3DREL: Error reading frtom unit: ' , 12)
RETURN

99 IF (.NOT. TRIP) GOTO 2O i
WRITE (OUNIT,6) IBDCHN
EXCMD = .FALSE.

6 FORMAT (' U3DREL: Unexpected E-O-F on unit: ',12)
RETURN
END

SUBROUTINE ULYREL (DSN,KPER,KSTP,IEIDCHN,BUFF,NCOL,NROW,
1 NLAY,TEXTEX,PERIIM,TOTIM,OUNIT,EXCMD)

C
C 2-DIMENSIONAL UNFORMATTED ARRAY READER FOR MODEL POST-PROCESSING
C

DOUBLE PRECISION TEXTEX,TXTFND
DIMENSION TEXT(4),BUFF(NCOL,NROW)
INTEGER OUNIT
LOGICAL EXCMD,TRIP
EQUIVALENCE (TXTFND,TEXT(3))

C
Cl SET FLAG & READ THE HEADER RECORD

TRIP = .FALSE.
10 READ (IBDCHN,ERR=98,END=99) IKSTP,tKPER,PERTIM,TOTIM,TEXT,INCOL,

1 INROW,INLAY
C !
C2 CHECK FOR ILLEGAL ARRAY SIZE. . . COUL1 D DESTROY STACK CONTENTS

IF (INCOL.GT.NCOL .OR. INROW.GT.NR0W .OR. INLAY.GT.NLAY) THEN
EXCMD = .FALSE.
WRITE (OUNIT,!) DSN, IBDCHN, INROVlf, INCOL, INLAY, NROW, NCOL, NLAY

1 FORMAT (' Array size error occurred reading ',A6,' on unit',
1 I3,/,' SIZE READ SIZE EXPECTED',
2 /,' NROW NCOL NLAY NROW NCOL NLAY',/,315,4X,315)

RETURN
ENDIF

C
C3 READ THE ARRAY INTO A BUFFER

READ (IBDCHN,ERR=98,END=99) BUFF

198

c
C4 CHECK IF STRESS-PERIOD & TIME-STEP WERE LESS THAN THE ONE REQUESTED, OR
C DATA SET TEXT DOES NOT AGREE WITH THE EXPECTED TEXT; THEN KEEP READING

IF((IKPER.LT.KPER .OR. (IKPER.EQ.KPER .AND. IKSTP.LT.KSTP)) .OR.
1 (IKPER.EQ.KPER .AND. IKSTP.EQ.KSTP .AND. TXTFND.NE.TEXTEX))THEN

WRITE (OUNIT,2) (TEXT(I),1=1,4),IKPER,IKSTP
2 FORMAT (/,1OX,' > FAST-FORWARDING... ',
1 'FOUND ',4A4, ' : STRESS PERIOD',13,', TIME STEP',13)

GOTO 1O
ENDIF

C
C5 FOUND THE CORRECT DATA SET

IF(IKSTP.EQ.KSTP .AND. IKPER.EQ.KPER .AND. TEXTEX.EQ.TXTFND)RETURN
IF (TRIP) THEN

C
C6 ALREADY REWOUND THIS UNIT ONCE, ABORT

EXCMD = .FALSE.
WRITE (OUNIT,3) DSN,IBDCHN,IKPER,IKSTP,KPER,KSTP

3 FORMAT (/, ' Error occurred reading ',A6,' on unit',13,
1 /,' FOUND: stress period',13,' time step',13,
2 /,'EXPECTED: stress period',13,' time step',13)
ENDIF
RETURN

C
C7 PAST THE REQUESTED STRESS PERIOD & TIME STEP, REWIND AND TRY AGAIN

20 TRIP = .TRUE.
WRITE (OUNIT,4) IBDCHN

4 FORMAT (/,1OX,' > REWINDING UNIT ',13)
REWIND (IBDCHN)
GOTO 1O

C
98 WRITE (OUNIT,5) IBDCHN

EXCMD = .FALSE.
5 FORMAT (' ULYREL: Error reading from unit: ',12)

RETURN
99 IF (.NOT. TRIP) GOTO 20

WRITE (OUNIT,6) IBDCHN
EXCMD = .FALSE.

6 FORMAT (' ULYREL: Unexpected E-O-F on unit: ',12)
RETURN
END

199

SUBROUTINE UI01FG (NPER,NLAY,NTS,IUSP,IUTS,IOFLG , ITSOC , INOC t
1 OUNIT,EXCMD)

C
C RETRIEVE THE HEAD/DRAWDOWN SAVE FLAGS FOR A STRESS-PERIOD AND TIME-STEP
C

INTEGER NTS(NPER),OUNIT,IOFLG(NLAY,2)
LOGICAL EXCMD

C
Cl -- IF OUTPUT CONTROL UNIT IS ZERO, THEN HEAD AND DRAWDOWN ARE NOT AVAILABLE

IF (INOC .EQ. O) THEN
WRITE (OUNIT,1)

1 FORMAT (/,' HEAD and DRAWDOWN are not available with default'
1 * output control *)

EXCMD = .FALSE.
RETURN

ENDIF
C 1
C2 CALCULATE THE TOTAL NUMBER OF TIME STEPS FROM THE START OF THE SIMULATION

NUMUTS = IUTS [
IF (IUSP .GT. 1) THEN

DO 1O 1=1,IUSP-1
NUMUTS = NUMUTS + NTS(I)

10 CONTINUE
ENDIF

C
C3 IS THE TIME STEP: BEHIND, AT, OR AHEAD OF THE OUTPUT CONTROL FILE POINTER

IDIFF = NUMUTS - ITSOC
IF (IDIFF) 1OO,400,2OO

1OO CONTINUE
C
C3A -- REVERSING TO A PREVIOUS TIME-STEP'

REWIND (INOC)
READ (INOC,2) IPAD1
NTSADV = NUMUTS
GOTO 300

200 CONTINUE
C
C3B ADVANCING TO A TIME-STEP

NTSADV = IDIFF
GOTO 3OO

C
CSC POSITION AND READ IOFLG FOR THE CORRECT TIME-STEP
300 CONTINUE

ITSOC = NUMUTS
DO 350 1=1,NTSADV

READ (INOC,2,ERR=98,END=99) INCODE
IF (INCODE .LT. 0) GOTO 350
IF (INCODE .EQ. O) THEN

READ (INOC,3,ERR=98,END=99) IPAD1,IPAD2,IPAD3,IPAD4
DO 310 K=1,NLAY

IOFLG(K,1) = IPAD3
IOFLG(K,2) = IPAD4

310 CONTINUE
ELSE

DO 330 K=1,NLAY
READ (INOC,3,ERR=98,END499)

1 IPAD1,JPAD2,(IOFLG(K,M), M=l,2)
33O CONTINUE

ENDIF
350 CONTINUE
4OO CONTINUE

C
C3D -- POSITIONED AT THE CORRECT TIME-STEP, IOFLG IS STORED

RETURN

200

c
98 WRITE (OUNIT,998) INOC

998 FORMAT (' UI01FG: Error reading from unit: ',12)
STOP

99 WRITE (OUNIT,999) INOC
999 FORMAT (' UIOlFG: Unexpected E-O-F on unit: ',12)

STOP
2 FORMAT (HO)
3 FORMAT (4I1O)

END

SUBROUTINE UXFERR (DARRAY,ARRAY,NUM)
DOUBLE PRECISION DARRAY
DIMENSION ARRAY(NUM), DARRAY(NUM)
DO 10 I = 1, NUM

DARRAY (I) = DBLE (ARRAY (I))
1O CONTINUE

RETURN
END

SUBROUTINE UXFERI (DARRAY,IARRAY,NUM)
DOUBLE PRECISION DARRAY
DIMENSION DARRAY(NUM)
INTEGER IARRAY(NUM)
DO 1O I = 1, NUM

DARRAY (I) = DBLE (IARRAY (I))
10 CONTINUE

RETURN
END

REAL FUNCTION UXFERD (DPHOLD)
DOUBLE PRECISION DPHOLD
UXFERD = DPHOLD
RETURN
END

SUBROUTINE ULAPRS (BUF,TEXT,KSTP,KPER,NCOL,NROW,ILAY,IPRN,IOUT)
C
C PRINT A 1-LAYER ARRAY IN STRIPS
C MODIFIED TO PROVIDE 8O COLUMN FORMATS
C

DIMENSION BUF(NCOL,NROW),TEXT(4)
C
Cl MAKE SURE THE FORMAT CODE (IP OR IPRN) IS BETWEEN 1 AND 2O

IP=IPRN
IF(IP.LT.l .OR. IP.GT.2O) IP=12

C
C2 DETERMINE THE NUMBER OF VALUES (NCAP) PRINTED ON ONE LINE.

IF(IP.EQ.l) NCAP=11
IF(IP.EQ.2) NCAP=9
IF(IP.GT.2 .AND. IP.LT.7) NCAP=15
IF(IP.GT.6 .AND. IP.LT.12) NCAP=2O
IF(IP.EQ.12) NCAP=10
IF(IP.GT.12) NCAP=8

C
C3 CALCULATE THE NUMBER OF STRIPS (NSTRIP).

NCPF=129/NCAP
IF (IP .GT. 12) NCPF = 9
ISP=0
IF(NCAP.GT.12) ISP=3
NSTRIP=(NCOL-1)/NCAP + 1
J1=1-NCAP
J2=O

201

c
C4 LOOP THROUGH THE STRIPS.

DO 2000 N=1,NSTRIP
C
C5 CALCULATE THE FIRST(Jl) & THE LAST(J2) COLUMNS FOR THIS STRIP

J1=J1+NCAP
J2=J2+NCAP
IF(J2.GT.NCOL) J2=NCOL

C
C6 -- PRINT TITLE ON EACH STRIP

WRITE(IOUT,1) TEXT,ILAY,KSTP,KPER
1 FORMAT(1H1,10X,4A4,' IN LAYER',13,' AT END OF TIME STEP',13,
1 ' IN STRESS PERIOD',I3/11X,71('-'))

C
C7 -- PRINT COLUMN NUMBERS ABOVE THE STRIP

CALL UCOLNO(J1,J2,ISP,NCAP,NCPF,IOUT)
C
C8 LOOP THROUGH THE ROWS PRINTING COLS Jl THRU J2 WITH FORMAT IP

DO 1000 I=1,NROW
GO TO(10,20,30,40,50,60,70,80,90,10O,110,120,130,140,150,160,

1 170,180,190,200), IP
C
C8A FORMAT 10G10.3

10 WRITE(IOUT,11) I,(BUF(J,I),J=J1,J2)
11 FORMAT(IX,13,2X,1PG1O.3,1O(IX,G10.3))

GO TO 1000
C
C8B -- FORMAT 8G13.6

20 WRITE(IOUT,21) I,(BUF(J,I),J=J1,J2)
21 FORMAT(IX,13,2X,1PG13.6,8(IX,G13 6))

GO TO 1000
C
CSC -- FORMAT 15F7.1

30 WRITE(IOUT,31) I, (BUF(J,I),J=J1, J2)
31 FORMAT(1X,I3,1X,15(1X,F7.1))

GO TO 1000
C
C8D FORMAT 15F7.2

40 WRITE(IOUT,41) I,(BUF(J,I),J=J1,J2)
41 FORMAT(IX,13,IX,15(IX,F7.2))

GO TO 1000
C
C8E FORMAT 15F7.3 j

50 WRITE(IOUT,51) I,(BUF(J,I),J=J1,J2)
51 FORMAT(IX,13,IX,15(IX,F7.3))

GO TO 1000
C
C8F FORMAT 15F7.4

60 WRITE(IOUT,61) I,(BUF(J,I),J=J1,J2)
61 FORMAT(1X,I3,1X,15(1X,F7.4))

GO TO 1000
C
C8G FORMAT 2OF5.0

70 WRITE(IOUT,71) I,(BUF(J,I),J=J1,J2)
71 FORMAT (IX, 13, IX, 20 (IX, F5.0))

GO TO 1000
C
C8H FORMAT 20F5.1

80 WRITE(IOUT,81) I,(BUF(J,I),J=J1,J2)
81 FORMAT(IX,13,IX,20(IX,F5.1))

GO TO 1000

202

c
C8I FORMAT 2OF5.2

90 WRITE(IOUT,91) I,(BUF(J,I),J=J1,J2)
91 FORMAT(1X,I3,1X,20(1X,F5.2))

GO TO 10OO
C
C8J FORMAT 2OF5.3

100 WRITE(IOUT,101) I,(BUF(J,I),J=J1,J2)
101 FORMAT(1X,I3,1X,20(1X,F5.3))

GO TO 1OOO
C
C8K FORMAT 20F5.4

HO WRITE(IOUT,111) I, (BUF(J,I) , J=J1, J2)
111 FORMAT(1X,I3,1X,2O(1X,F5.4))

GO TO 1OOO
C
C8L FORMAT 9G11.4

120 WRITE(IOUT J 121) I,(BUF(J,I),J=J1,J2)
121 FORMAT(1X,I3,2X,1PG11.4,9(1X,G11.4))

GO TO 10OO
C
C8M FORMAT 8G9.O

130 WRITE(IOUT,131) I,(BUF(J,I),J=J1,J2)
131 FORMAT(IX,13,IX,1PG9.O,7G9.O)

GO TO 1OOO
C
C8N FORMAT 8G9.1

140 WRITE(IOUT J 141) I,(BUF(J,I),J=J1,J2)
141 FORMAT(IX,13,IX,1PG9.1,7G9.1)

GOTO 1OOO
C
C80 FORMAT 8G9.2

150 WRITE(IOUT,151) I,(BUF(J,I),J=J1,J2)
151 FORMAT(1X,13,IX,1PG9.2,7G9.2)

GOTO 10OO
C
C8P FORMAT 8G9.3

160 WRITE(IOUT,161) I,(BUF(J,I),J=J1,J2)
161 FORMAT(IX,13,IX,1PG9.3,7G9.3)

GOTO 1OOO
C
C8Q FORMAT 8F9.O

170 WRITE(IOUT,171) I,(BUF(J,I),J=J1,J2)
171 FORMAT(1X,I3,1X,8F9.0)

GOTO 10OO
C
C8R FORMAT 8F9 .1

180 WRITE(IOUT,181) I,(BUF(J,I),J=J1,J2)
181 FORMAT(1X,I3,1X,8F9.1)

GOTO 10OO
C
C8S FORMAT 8F9.2

190 WRITE(IOUT,191) I,(BUF(J,I),J=J1,J2)
191 FORMAT(1X,I3,1X,8F9.2)

GOTO 100O
C
C8T FORMAT 8F9.3

200 WRITE(IOUT,201) I,(BUF(J,I),J=J1,J2)
201 FORMAT(IX,13,IX,8F9.3)

GOTO 1OOO
C
10OO CONTINUE
2000 CONTINUE

RETURN
END

203

SUBROUTINE ULAPRW (BUF,TEXT,KSTP,KPER,NCOL,NROW,ILAY,IPRN,IOUT)
C
C PRINT 1-LAYER ARRAY
C MODIFIED TO USE PRINT FORMAT CODES 13-2O FOR 8O-COLUMN DEVICES
C

DIMENSION BUF(NCOL,NROW),TEXT(4)
C
Cl PRINT A HEADER

IF(ILAY.LE.O) GO TO 5
WRITE(IOUT,1) TEXT,ILAY,KSTP,KPER

1 FORMAT(1H1,10X,4A4,' IN LAYER',13,' AT END OF TIME STEP',13,
1 ' IN STRESS PERIOD',I3/11X,71('-'))

C
C2 MAKE SURE THE FORMAT CODE (IP OR IPRN) IS BETWEEN 1 AND 2O.

5 IP=IPRN
IF(IP.LT.l .OR. IP.GT.20) IP=12 |

C3 CALL THE UTILITY MODULE UCOLNO TO PRINT COLUMN NUMBERS.
IF(IP.EQ.l) CALL UCOLNO(1,NCOL,0,11,11,IOUT)
IF(IP.EQ.2) CALL UCOLNO (1, NCOL, O, 9, i!4 , IOUT)
IF(IP.GT.2 .AND. IP.LT.7) CALL UCOLNO(1,NCOL,3,15,8,IOUT)
IF(IP.GT.6 .AND. IP.LT.12) CALL UCOLNO(1,NCOL,3,2O,6,IOUT)
IF(IP.EQ.12) CALL UCOLNO(1,NCOL,O,1O,12,IOUT)
IF(IP.GT.12) CALL UCOLNO(1,NCOL,O,8,9,IOUT)

C
C4 -- LOOP THROUGH THE ROWS PRINTING EACH ONE IN ITS ENTIRETY.

DO 1000 1=1,NROW
GO TO(1O,2O,3O,4O,5O,60,7O,8O,9O,1OO,11O,12O,13O,140,150,16O,

1 170,180,190,200), IP
C
C4A FORMAT 11G1O.3

10 WRITE(IOUT,11) I,(BUF(J,I),J=1,NCOL)
11 FORMAT(1X,I3,2X,1PG1O.3,1O(1X,G1OI.3)/(5X,11(1X,G10.3)))

GO TO 1OOO
C
C4B FORMAT 9G13.6

20 WRITE(IOUT,21) I,(BUF(J,I),J=l,NCOL)
21 FORMAT(IX,13,2X,1PG13.6,8(IX,G13.6)/(5X,9(IX,G13.6)))

GO TO 1OOO
C
C4C FORMAT 15F7.1

30 WRITE(IOUT,31) I,(BUF(J,I),J=l,NCOL)
31 FORMAT(1X,I3,1X,15(1X,F7.1)/(5X,15(1X,F7.1)))

GO TO 10OO
C
C4D FORMAT 15F7.2

40 WRITE(IOUT,41) I,(BUF(J,I),J=l,NCOL)
41 FORMAT(IX,13,IX,15(IX,F7.2)/(5X,15(IX,F7.2)))

GO TO 1000
C
C4E FORMAT 15F7.3

50 WRITE(IOUT,51) I,(BUF(J,I),J=l,NCOL)
51 FORMAT(IX,13,IX,15(IX,F7.3)/(5X,15(IX,F7.3)))

GO TO 1000
C
C4F FORMAT 15F7.4

60 WRITE(IOUT,61) I,(BUF(J,I),J=l,NCOL)
61 FORMAT(IX,13,IX,15(IX,F7.4)/(5X,15(IX,F7.4)))

GO TO 1OOO
C
C4G FORMAT 2OF5.O

70 WRITE(IOUT,71) I,(BUF(J,I),J=l,NqOL)
71 FORMAT(1X,I3,1X,20(1X,F5.0)/(5X,20(1X,F5.0)))

GO TO 1000

204

c
C4H FORMAT 20F5.1

80 WRITE(IOUT,81) I,(BUF(J,I),J=l,NCOL)
81 FORMAT(IX,13,IX,20(IX,F5.1)/(5X,20(1X,F5.1)))

GO TO 1000
C
C4I FORMAT 20F5.2

90 WRITE(IOUT,91) I,(BUF(J,I),J=l , NCOL)
91 FORMAT(IX,13,IX,20(IX,F5.2)/(5X,20(IX,F5.2)))

GO TO 1000
C
C4J FORMAT 20F5.3

100 WRITE(IOUT,101) I,(BUF(J,I),J=l,NCOL)
101 FORMAT(IX,13,IX,20(IX,F5.3)/(5X,20(IX,F5.3)))

GO TO 1000
C
C4K FORMAT 20F5.4

110 WRITE(IOUT,111) I,(BUF(J,I),J=1,NCOL)
111 FORMAT(IX,I3,1X,20(1X,F5.4)/(5X,20(1X,F5.4)))

GO TO 1000
C
C8L FORMAT 10G11.4

120 WRITE (IOLTIM21) I, (BUF (J , I) , J=l , NCOL)
121 FORMAT(IX,13,2X,1PG11.4,9(IX,Gil.4)/(5X , 1O(IX,Gil.4)))

GOTO 1000
C
C8M FORMAT 8G9.0

130 WRITE(IOUT,131) I,(BUF(J,I),J=l,NCOL)
131 FORMAT(IX,13,IX,1PG9.0,7G9.O,/(5X,8G9.0))

GOTO 1000
C
C8N FORMAT 8G9.1

140 WRITE(IOUT,141) I,(BUF(J,I),J=l,NCOL)
141 FORMAT(IX,13,IX,1PG9.1,7G9.1,/(5X,8G9.1))

GOTO 1000
C
C80 FORMAT 8G9.2

150 WRITE(IOUT,151) I,(BUF(J,I),J=l,NCOL)
151 FORMAT(IX,13,IX,1PG9.2,7G9.2,/(5X,8G9.2))

GOTO 1OOO
C
C8P FORMAT 8G9.3

160 WRITE(IOUT,161) I,(BUF(J,I),J=l,NCOL)
161 FORMAT(IX,13,IX,1PG9.3,7G9.3,/(5X,8G9.3))

GOTO 1000
C
C8Q FORMAT 8F9.0

170 WRITE(IOUT,171) I,(BUF(J,I),J=l,NCOL)
171 FORMAT(IX,13,IX,8F9.O/(5X,8F9.O))

GOTO 1000
C
C8R FORMAT 8F9.1

180 WRITE(IOUT,181) I,(BUF(J,I),J=l,NCOL)
181 FORMAT(1X,I3,IX,8F9.I/(5X,8F9.1))

GOTO 1OOO
C
C8S FORMAT 8F9.2

190 WRITE(IOUT,191) I,(BUF(J,I),J=l,NCOL)
191 FORMAT(IX,13,IX,8F9.2/(5X,8F9.2))

GOTO 1000
C
C8T FORMAT 8F9.3

200 WRITE(IOUT,201) I,(BUF(J,I),J=l,NCOL)
201 FORMAT(1X,I3,1X,8F9.3/(5X,8F9.3))

GOTO 1000

205

c
1000 CONTINUE

RETURN
END

SUBROUTINE UIDREL(A,ANAME,J J,IN,IOUT,NOPRT)
C
C ROUTINE TO INPUT 1-D REAL DATA MATRICES
C MODIFIED TO ALLOW SUPPRESSION OF ALL PRINTING
C A IS ARRAY TO INPUT
C ANAME IS 24 CHARACTER DESCRIPTION OF A
C JJ IS NO. OF ELEMENTS
C IN IS INPUT UNIT
C IOUT IS OUTPUT UNIT
C NOPRT IS A FLAG «O MEANS SUPPRESS ALL PRINTING
C

DIMENSION A(JJ),ANAME(6),FMTIN(5)
$INSERT TINY.INS
C
Cl READ ARRAY CONTROL RECORD.

READ (IN,1) LOCAT,CNSTNT,FMTIN,IPRN
1 FORMAT(I10,F10.0,5A4,I1O)

C
C2 USE LOCAT TO SEE WHERE ARRAY VALUES COME FROM.

IF(LOCAT.GT.O) GO TO 9O
C
C3 IF LOCAT=0 THEN SET ALL ARRAY VALUES EQUAL TO CNSTNT. RETURN

DO 8O J=l,JJ
80 A(J)=CNSTNT

IF(NOPRT.GE.O)WRITE(IOUT,3) ANAME,CNSTNT
3 FORMAT(IX,52X,6A4,' =',G15.7)

RETURN

C4 IF LOCAT>0 THEN READ FORMATTED RECORDS USING FORMAT FMTIN.
90 IF (NOPRT.GE.O)WRITE(IOUT,5) ANAME,LOCAT,FMTIN
5 FORMAT(1X,///30X,6A4,' WILL BE READ ON UNIT',13,
1 ' USING FORMAT: ',5A4/3OX,79('-')/)
READ (LOCAT,FMTIN) (A(J),J=l,JJ)

C
C5 IF CNSTNT NOT ZERO THEN MULTIPLY AFFRAY VALUES BY CNSTNT.

IF(ABS(CNSTNT).LE.TINY) GO TO 12O
DO 1OO J=1,JJ [

100 A(J)=A(J)*CNSTNT i
C
C6 IF PRINT CODE (IPRN) =>O THEN PRINT ARRAY VALUES.
120 IF(IPRN.LT.O.OR.NOPRT.LT.O) RETURN

WRITE(IOUT,1001) (A(J),J=l,JJ)
1O01 FORMAT((1X,1PG12.5,9(1X,G12.5)))

RETURN
END

206

SUBROUTINE U2DREL(A, ANAME,II,JJ,K,IN,IOUT,NOPRT)
C
C ROUTINE TO INPUT 2-D REAL DATA MATRICES
C MODIFIED TO ALLOW SUPPRESSION OF PRINTING
C ANAME IS 24 CHARACTER DESCRIPTION OF A
C II IS NO. OF ROWS
C JJ IS NO. OF COLS
C K IS LAYER NO (USED WITH NAME TO TITLE PRINTOUT UNLESS K IS O)
C IN IS INPUT UNIT
C IOUT IS OUTPUT UNIT
C NOPRT IS A FLAG «O MEANS SUPPRESS ALL PRINTING)
C

DIMENSION A(JJ,II),ANAME(6),FMTIN(5)
$INSERT TINY.INS
C
Cl READ ARRAY CONTROL RECORD.

READ (IN,1) LOCAT,CNSTNT,FMTIN,IPRN
1 FORMAT(I10,F10.0,5A4,I10)

C
C2 USE LOCAT TO SEE WHERE ARRAY VALUES COME FROM.

IF(LOCAT) 2OO,5O,9O
C
C3 IF LOCAT=0 THEN SET ALL ARRAY VALUES EQUAL TO CNSTNT. RETURN

50 DO 80 1=1,11
DO 80 J=l,JJ

80 A(J,I)=CNSTNT
IF(K.GT.O.AND.NOPRT.GE.O) WRITE(IOUT,2) ANAME,CNSTNT,K

2 FORMAT(IX,52X,6A4,' ' = ',G15.7,» FOR LAYER',13) *
IF(K.LE.O.AND.NOPRT.GE.O) WRITE(IOUT,3) ANAME,CNSTNT

3 FORMAT(IX,52X,6A4,' =',G15.7)
RETURN

C
C4 IF LOCAT>0 THEN READ FORMATTED RECORDS USING FORMAT FMTIN.

90 IF(K.GT O AND NOPRT.GE.O) WRITE(IOUT,4) ANAME,K,LOCAT,FMTIN
4 FORMAT(IX,///3OX,6A4,' FOR LAYER',13,' WILL BE READ ON UNIT',
1 13,' USING FORMAT: ',5A4/3OX,96('-'))
IF(K.LE.O.AND.NOPRT.GE.O) WRITE(IOUT,5) ANAME,LOCAT,FMTIN

5 FORMAT(IX,///30X,6A4,' WILL BE READ ON UNIT',
1 13,' USING FORMAT: ',5A4/3OX,83('-'))
DO 100 1=1,11
READ (LOCAT,FMTIN) (A(J,I),J=l,JJ)

1OO CONTINUE
GO TO 3OO

C
C5 LOCAT<0 THEN READ UNFORMATTED RECORD CONTAINING ARRAY VALUES

200 LOCAT=-LOCAT
IF(K.GT.O.AND.NOPRT.GE.O) WRITE(IOUT,2O1) ANAME,K,LOCAT

201 FORMAT(IX,///30X,6A4,', LAYER',13,
1 ' WILL BE READ UNFORMATTED ON UNIT',I3/3OX,73('-'))
IF(K.LE.O.AND.NOPRT.GE.O) WRITE(IOUT,2O2) ANAME,LOCAT

202 FORMAT(IX,///30X,
1 ' WILL BE READ UNFORMATTED ON UNIT',I3/3OX,6O('-'))
READ(LOCAT)
READ(LOCAT) A

C
C6 IF CNSTNT NOT ZERO THEN MULTIPLY ARRAY VALUES BY CNSTNT.

300 IF(ABS(CNSTNT).LE.TINY) GO TO 32O
DO 310 1=1,11
DO 310 J=l,JJ
A(J,I)=A(J,I)*CNSTNT

310 CONTINUE

207

C7 IF PRINT CODE (IPRN) =>0 THEN PRINT ARRAY VALUES.
320 IF(IPRN.LT 0.OR.NOPRT.LT.O) RETURN

CALL ULAPRW(A , ANAME ,0,3,33,11,0, IPRN,IOUT)
RETURN
END

C
C
C
C
C
C
C
C
C
C
C
C

C
Cl

C
C2

C
C3

C
C4

SUBROUTINE U2DINT(IA,ANAME,II,JJ,K,tN,IOUT,NOPRT)

ROUTINE TO INPUT 2-D INTEGER DATA MATRICES
MODIFIED TO ALLOW SUPPRESSION OF PRINTING

IA IS ARRAY TO INPUT
ANAME IS 24 CHARACTER DESCRIPTION OF IA
II IS NO. OF ROWS
JJ IS NO. OF COLS
K IS LAYER NO. (USED WITH NAME TO TITLE PRINTOUT UNLESS K IS 0)
IN IS INPUT UNIT
IOUT IS OUTPUT UNIT
NOPRT IS A FLAG «O MEANS SUPPRES$ ALL PRINTING)

DIMENSION IA(JJ,II),ANAME(6),FMTIN($)

 READ ARRAY CONTROL RECORD.
READ (IN,1) LOCAT,ICONST,FMTIN,IPRN

1 FORMAT(I10,I10,5A4,I10)

 USE LOCAT TO SEE WHERE ARRAY VALUES COME FROM
IF(LOCAT) 200,50,90

 IF LOCAT=0 THEN SET ALL ARRAY VALUES EQUAL TO ICONST. RETURN
50 DO 80 1=1,11

DO 80 J=1,JJ
80 IA(J,I)=ICONST

IF(K.GT.O.AND.NOPRT.GE.O) WRITE(IOUT,2) ANAME,ICONST,K
2 FORMAT(IX,52X,6A4,' =',115,' FOR LAYER',13)

IF(K.LE.O.AND.NOPRT.GE.O) WRITE(IOUT,3) ANAME,ICONST
3 FORMAT(IX,52X,6A4,' =',I15)

RETURN

 IF LOCAT>0 THEN READ FORMATTED RECORDS USING FORMAT FMTIN.
90 IF(K.GT.O.AND.NOPRT.GE.O) WRITE(IOUT,4) ANAME,K,LOCAT,FMTIN
4 FORMAT(IX,///30X,6A4,' FOR LAYER',12;
1 13,' USING FORMAT: ',5A4/30X,
IF(K.LE.O.AND.NOPRT.GE.O) WRITE(IOUT,5) ANAME,LOCAT,FMTIN

5 FORMAT(1X,///30X,6A4,' WILL BE READ

WILL BE READ ON UNIT',

ON UNIT'
1 13,' USING FORMAT: ',5A4/30X,83('-'))
DO 100 1=1,11
READ (LOCAT,FMTIN) (IA(J,I),J=l,JJ)

1OO CONTINUE
GO TO 300

C
C5 LOCAT<0 THEN READ UNFORMATTED RECORD CONTAINING ARRAY VALUES

200 LOCAT=-LOCAT
IF(K.GT.O.AND.NOPRT.GE.O) WRITE(IOUT,201) ANAME,K,LOCAT

201 FORMAT(1X,///30X,6A4,', LAYER 1 ,13,
1 ' WILL BE READ UNFORMATTED ON UNIT',I3/30X,73('-'))
IF(K.LE.O.AND.NOPRT.GE.O) WRITE(IOUT,202) ANAME,LOCAT

202 FORMAT(IX,///30X,6A4,
1 ' WILL BE READ UNFORMATTED ON UNIT',I3/3OX,60('-'))
READ(LOCAT)
READ(LOCAT) IA

208

c
C6 IF ICONST NOT ZERO THEN MULTIPLY ARRAY VALUES BY ICONST

300 IF(ICONST.EQ.O) GO TO 320
DO 31O 1=1,11
DO 31O J=1,JJ
IA(J,I)=IA(J,I)*ICONST

310 CONTINUE
C
C7 IF PRINT CODE (IPRN) =>O THEN PRINT ARRAY VALUES.

320 IF(IPRN.LT.O.OR.NOPRT.LT.0) RETURN
IF(IPRN.GT.5) IPRN=0
IPRN=IPRN+1

C
C8 PRINT COLUMN NUMBERS AT TOP OF PAGE.

IF(IPRN.EQ.l) CALL UCOLNO(1,JJ,O,1O,12,IOUT)
NL=125/IPRN/5*5
IF(IPRN.GT.1) CALL UCOLNO(1,JJ,4,NL,IPRN,IOUT)

C
C9 -- PRINT EACH ROW IN THE ARRAY.

DO 11O 1=1,11
C
CIO SELECT THE FORMAT

GO T0(101,102,103,104,105,106), IPRN
C
C10A FORMAT 1OI11

101 WRITE(IOUT,1001) I,(IA(J,I),J=l,JJ)
1001 FORMAT(IX,13,2X,111,9(IX,111)/(5X,10(IX,111)))

GO TO 11O
C
C10B FORMAT 6OI1

102 WRITE(IOUT,1002) I,(IA(J,I),J=l,JJ)
1002 FORMAT(IX,13,IX,60(IX,II)/(5X,60(IX,II)))

GO TO 110
C
C10C FORMAT 4012

103 WRITE(IOUT,1003) I,(IA(J,I),J=l,JJ)
1003 FORMAT(1X,I3,1X,4O(1X,I2)/(5X,4O(1X,I2)))

GO TO 110
C
C1OD FORMAT 3013

104 WRITE(IOUT,1004) I,(IA(J,I),J=l,JJ)
1004 FORMAT(1X,I3,1X,3O(1X,I3)/(5X,3O(1X,I3)))

GO TO 11O
C
C1OE FORMAT 2514

105 WRITE(IOUT,1005) I,(IA(J,I),J=l,JJ)
1005 FORMAT(IX,13,IX,25(IX,14)/(5X,25(IX,14)))

GO TO 110
C
C1OF FORMAT 2OI5

106 WRITE(IOUT,1O06) I,(IA(J,I),J=l,JJ)
1006 FORMAT(IX,13,IX,20(IX,15)/(5X,20(IX,15)))
110 CONTINUE

RETURN
END

209

Attachment C--Vector program listing.

/* VECTOR.AML Create ARC/INFO coverage!of flow vectors from the
/* Modular Model Statistical Processor program,
/* VECT command output fi le.
&ARGS GEN.FILE~

COVERAGE'
NO.ROWS~
NO.COLS

&TYPE '[VECTOR Revision 1.O]' ,
&TYPE

/* TEST ARGUMENTS FOR ERRORS -
&.S ERR := i
&IF [NULL %GEN.FILES] | [NULL ^COVERAGES] &THEN "

&S ERR := 'Missing argument* I
&IF [TYPE %NO.ROWS%] ~ = -1 | [TYPE %NO.COLS%] ~= -1 &THEN "

&.S ERR := 'Nrow and Nco I must be positive integers'
&IF %NO.ROWS% <= O | %NO.COLS% <= O &THEN "

&.S ERR := 'Nrow and Nco I must be positive integers'
&IF [EXISTS ^COVERAGES -FILE] | [EXISTS ^COVERAGES -DIR] | "

[EXISTS ^COVERAGES -COVERAGE] &THEN "
AS ERR := ^COVERAGES' already exists.'

&IF " [EXISTS %GEN.FILES -FILE] &THEN ~
&S ERR := %GEN.FILES' does not exist.'

&.IF " [NULL %ERR%] &THEN &GOTO HELP i

/* SET METHOD FOR INVOKING ARCNUM LOAD MODULE ON THIS COMPUTER SYSTEM
&S OS.COMMAND := RESUME ARCNUM.RUN

/* CREATE THE COVERAGE AND GENERATE LINE TOPOLOGY
GENERATE ^COVERAGES
INPUT %GEN.FILES
LINES
QUIT

BUILD ^COVERAGES LINE

/* ADD AND DEFINE ITEMS FOR ROW, COLUMN, AND LAYER
441ADDITEM ^COVERAGES.AAT ^COVERAGES.AAT ROW

ADDITEM ^COVERAGES.AAT ^COVERAGES.AAT COLUMN 441
ADDITEM ^COVERAGES.AAT ^COVERAGES.AAT LAYER 441

&DATA %OS.COMMANDS
[DIR [PATHNAME *]]>INFO
^COVERAGES
%NO.ROWS%
%NO.COLS%
&END

&RETURN

&LABEL HELP
&TYPE %ERR%
&TYPE
&TYPE 'Usage: &RUN VECTOR Vect_fi Ie Coverage Nrow NcoI'
&TYPE
&TYPE 'where: Vect_fi Ie = name of file created by MMSP VECT command'
&TYPE ' Coverage = name of the line coverage to be created'
&TYPE ' Nrow = number of rows in the model simulation grid'
&TYPE ' NcoI = number of columns in the model simulation grid'
&TYPE
&RETURN

210

PROGRAM ARCNUM
C
C CALCULATE ROW, COLUMN, & LAYER FROM GRID CELL LOCATION IN FLOW VECTOR COVERAGE
C JONATHON SCOTT, SEPTEMBER 30, 1988
C

CHARACTER DIRECT*128, ARCCOV*32, FILE*32
CHARACTER USER*4, STRING*16, NAMITM*16

C
INTEGER IPNTAR(4), IROWAR(4), ICOLAR(4), ILAYAR(4)
INTEGER INREC(1024)
DOUBLE PRECISION REALLY

C
PARAMETER (USER='ARC',STRING='')
PARAMETER (ITWO=2)

C
Cl INITIALIZE ARC LIBRARY ROUTINES

CALL LUNINI
CALL MINIT
CALL INFINT

C
C2 GET PATHNAME, COVERAGE NAME, & NUMBER OF ROWS / COLUMNS IN THE MODEL GRID

READ (*,'(A)') DIRECT, ARCCOV
READ (*,*) NROW,NCOL
NCR = NROW * NCOL

C
C3 OPEN THE AAT FOR THE MODEL COVERAGE & DEFINE ITEM MATRICIES

FILE = ARCCOV (1:LENGTH(ARCCOV,32)) // '.AAT'
CALL INFOPN (FILE,DIRECT,USER,ITWO,NFARC,NUMARC,IARCLN,IER)
IF (IER .NE. 0) THEN

WRITE (*,'(2A)') 'UNABLE TO OPEN AAT FOR: ',ARCCOV
GOTO 991

END IF
C
C4 EXTRACT THE ARRAY DESCRIBING THE COVER-ID ITEM

NAMITM = ARCCOV (1:LENGTH (ARCCOV,32)) // '-ID'
CALL INFEXI (NFARC,NAMITM,IPNTAR,IEXIST)
IF (IEXIST .NE. 1) THEN

WRITE (*,'(A,I4)') 'ERROR DURING INFEXI OF -ID',IER
GOTO 991

ENDIF
C
C5 EXTRACT THE ARRAY DESCRIBING THE ROW ITEM

NAMITM = 'ROW'
CALL INFEXI (NFARC,NAMITM,IROWAR,IEXIST)
IF (IEXIST .NE. 1) THEN

WRITE (*,'(A,I4)') 'ERROR DURING INFEXI OF ROW',IER
GOTO 991

ENDIF
C
C6 EXTRACT THE ARRAY DESCRIBING THE COLUMN ITEM

NAMITM = 'COLUMN'
CALL INFEXI (NFARC,NAMITM,ICOLAR,IEXIST)
IF (IEXIST .NE. 1) THEN

WRITE (*,'(A,I4)') 'ERROR DURING INFEXI OF COLUMN',IER
GOTO 991

ENDIF
C
C7 EXTRACT THE ARRAY DESCRIBING THE LAYER ITEM

NAMITM = 'LAYER'
CALL INFEXI (NFARC,NAMITM,ILAYAR,IEXIST)
IF (IEXIST .NE. 1) THEN

WRITE (*,'(A,I4)') 'ERROR DURING INFEXI OF LAYER',IER
GOTO 991

ENDIF

211

c
C8 LOOP THROUGH THE ARCS, COMPUTING & WRITING ROW, COLUMN, & LAYER

DO 20 IPNT=1 , NUMARC
C
C8A RETRIEVE A RECORD FROM THE ARC ATTRIBUTE TABLE

IRECNO = IPNT
CALL INFGET (NFARC,IRECNO,INREC,IER)
IF (IER .NE. O) THEN

WRITE (*,'(A,I4)') 'ERROR DURING INFGET ',IER
GOTO 991

END IF
C
C8B EXTRACT THE COVER-ID DATA FROM THE RECORD

CALL INFDEC (INREC,IARCLN,IPNTAR,REALLY,STRING,IER)
IF (IER .NE. O) THEN

WRITE (*,'(A,I4)') 'ERROR DURING INFDEC ',IER
GOTO 991

END IF
C
CSC CALCULATE THE ROW, COLUMN, & LAYER LOCATION

LCPT = IDINT(REALLY)
CALL ULC1ND (LCPT,NCOL,NCR,I,J,K)

C
C8D ENCODE ON THE RECORD THE ROW, COLUMN, & LAYER

REALLY = DBLE(I)
CALL INFENC (IROWAR,REALLY,STRING,IARCLN,INREC,IER)
IF (IER .NE. O) THEN

WRITE (*,'(A,I4)') 'ERROR DURING INFENC OF ROW ',IER
GOTO 991

ENDIF
REALLY = DBLE(J)
CALL INFENC (ICOLAR,REALLY,STRING,IARCLN,INREC,IER)
IF (IER .NE. O) THEN

WRITE (*,'(A,I4)') 'ERROR bURING INFENC OF COLUMN ',IER
GOTO 991

ENDIF
REALLY = DBLE(K)
CALL INFENC (ILAYAR,REALLY,STRING,IARCLN,INREC,IER)
IF (IER .NE. 0) THEN

WRITE (*,'(A,I4)') 'ERROR DURING INFENC OF LAYER ',IER
GOTO 991

ENDIF [
c !
C8E WRITE THE UPDATED RECORD TO THE ARC ATTRIBUTE TABLE

IRECNO = IPNT
CALL INFPUT (NFARC,IRECNO,INREC,IER)
IF (IER .NE. 0) THEN

WRITE (*,'(A,I4)') 'ERROR DURING INFPUT ',IER
GOTO 991

ENDIF
20 CONTINUE
C
C9 FINISHED WITH ALL THE ARCS

WRITE (*,'(A,I4)') 'Number of arcs defined = ',NUMARC
991 CALL INFCLS (NFARC)

STOP
END i

212

INTEGER FUNCTION LENGTH (STRING,LEN)
C
C FUNCTION TO DETERMINE THE LENGTH OF A CHARACTER VARIABLE
C

CHARACTER*(*) STRING
DO 1O I=LEN,1,-1

10 IF (STRING(I:I) .NE. ' ') GOTO 2O
1 = 0

2O LENGTH = I
RETURN
END

C
SUBROUTINE ULC1ND (LCPT,NCOL,NCR,I,J,K)

C
C FINDS LOCATION IN GRID FROM STORAGE LOCATION IN MATRIX
C

IREM = MOD (LCPT,NCR)
K = LCPT / NCR

IF (IREM .NE. O) K = K + 1
ITOP = LCPT - (K-l) * NCR

I = ITOP / NCOL
IREM = MOD (ITOP,NCOL)
IF (IREM .NE. O) 1=1+1

J = LCPT - ((K-l) * NCR + (1-1) * NCOL)
RETURN
END

213

APPENDIX
ABBREVIATED INPUT INSTRUCTIONS

The instructions supplied here are Intended as a quick reference for
experienced users. Detailed information! for each command is provided in
chapter 3. The command descriptions in this appendix provide terse
explanations of the data requirements for each command. Acronyms are used
with each command description to provide a consistent, abbreviated
description of the required format. The explanations of the acronyms are
provided in alphabetical order after the command listing printed below.

Start! ng
Column: j g
Fields: **** COMMENT

Starting
Column: , .
Fields: TITL TITLE

Starting

Fields: READ ?)SN bfjIT telM WPE IP

when reading histogram cut points

Starting
Column: i 6 13 16
Fields: READ CLASS UNIT NCUT

^RAY-NAME

Starti ng

Fields: l»RIN &SN LAYER MASK HlT-CODE lAsSING-VALUES

Starti ng

Fields: l/RIT f)SN LAYER MASK f&IT HlT-CODE I&SSING-VALUES

Starting
Column: i K 13 15
Fields: STAT DSN LAYER MASK

Starti ng

Fields: hlST f)SN LAYER MASK

Starti ng

Fields! COMP f)SNl LAYER OPERATOR DSN2 LAYER ?«ASK i^MIT

214

Starting

Fields: LATH fcsNi1 LAYER AERATOR bsN2 DWER ?>SN3 ^RAY-NAME

Starting

Fields: tlEAD t)NIT ROW cf)L l3
C?OL R?

OW H)L 1/AY

Starting
Column: , R Q
Fields: REBO SP TS

Starting

Fields: VhlC V?iICK2

Starting

Fields: ROW C?)L l\Y I&W l?)L ^A

Starting
Column: i K Q 15
Fields: VECT UNIT ORIENTATION SCALE-FACTOR

Acronym Explanations

ARRAY-NAME: is a 24-character name given to a data array. ARRAY-NAME is not
explicitly used by the MMSP program, but is printed to identify the
contents of a data array.

COL: is a three-digit integer specifying a column number in the simulation
grid.

COMMENT: is a 75-character field used for internal documentation of an MMSP
command file.

DSN, DSN1, DSN2, DSN3: is a six-character data set name given to a two- or
three-dimensional data array. Some DSNs are reserved for particular
data arrays. The reserved DSNs are listed below, see table 7.

STRT
WELL
HEAD
RIFACE
CBCRCH
CBCGHB

SCI
RECH
DRAWDN
FRFACE
CBCWEL
UBOUND

TOP
RECHF
STORAG
LOFACE
CBCDRN
CLASS

BOT
AREA
CNHEAD
CBCRIV
CBCEVT

215

FMT-CODE: is a two-digit integer identifying a Fortran format to use when
printing or writing a data array.

FMT-CODE

0
1
2
3
4
5
6

FORTRAN
FORMAT

(10G11.4)
(11G10.3)
(9G13.6)
(15F 7
(15F 7
(15F 7

1)
2)
3)

(15F 7.4)

FMT-CODE

7
8
9
10
11
12
13

'ORTRAN
'ORMAT

(20F
(20F
(20F
(20F 5

0)
1)
2)
3)

(20F 5.4)
(10G11.4)
(8G 9.0)

LAYER: is a two-digit integer specifying

FMT-CODE

14
15
16
17
18
19
20

FORTRAN
FORMAT

(8G 9
(8G 9
(8G 9
(8F 9
(8F 9
(8F 9

1)
2)
3)
0)
1)
2)

(8F 9.3)

a layer number of the simulation
grid. When LAYER is zero, all layers are processed by the command.
When LAYER is specified for a two-dimensional data array, the field
identifies which boundary-array layer to use for masking the data array.

LAY: is a three-digit integer indicating a layer in the simulation grid.

LIMIT: is a four-digit integer controlling the maximum number of nodes that
will be printed when a COMP command is performed and the comparison
condition is true. j

MASK: consists of three two-digit mask fields. Specifying a non-zero number
in the first mask field causes zeroes in the data array to be masked.
The second mask field controls the model-boundary mask as follows.

Mask field contents
_o

-2
-1
0
1
2
3

Nodes masked
Active and constant head nodes
Inactive and active nodes
Active nodes
None
Inactive and constant head nodes
Inactive nodes
Constant head nodes

The third mask field controls the user-boundary mask. The user-boundary
must have been previously defined with the READ or SLIC command prior to
using a user-boundary mask. Specifying a positive number causes values
in the data array to be masked when the corresponding node in the
user-boundary array is less than or equal to zero. Specifying a
negative number masks the complementary set of nodes. Specifying a zero
disables the user-boundary mask.

MISSING-VALUES: are three real numbers placed in a 30-column field,
according to the Fortran format (SFlb.O). The three numbers over-ride
the default missing values shown in table 1 when executing the WRIT or
PRIN commands. The first missing va|lue is written by these commands
when a value in the data array is masked by the zero mask, the second
missing value is written when a value is masked by the model boundary
mask, and the third missing value is written when a value is masked by
the user boundary mask.

216

NCLASS: is a two-digit integer specifying the number of frequency 'classes.
When between -3 and -20, classes are computed by MMSP using logarithmic
scaling. When between 3 and 20, classes are computed by MMSP using
arithmetic scaling. Specifying NCLASS as a number between -3 and 3,
causes MMSP to use cut points for frequency classes provided previously
with the READ command.

NCUT: is a two-digit integer specifying the number of cut points to be read
for later use with the HIST command.

NDIM: is a one-digit integer (either 2 or 3) that specifies the number of
dimensions when reading data arrays. NDIM is ignored when a reserved
DSN is used.

OPERATOR: is a two-character field indicating which mathematical operation
or logical comparison to perform with the MATH or COMP command. Each
command has different operators as shown below.

MATH command operators COMP command operators
+ or AD = or EQ
* or SU ~= or NE
* or MU < or LT
/ or DI > or GT

** or EX <= or =< or LE
II or AB >= or => or GE

ORIENTATION: is a five-character field specifying a viewing orientation for
an oblique slice of the simulation grid. ORIENTATION must be one of
"TOP", "SIDE", or "FRONT".

ROW: is a three-digit integer that specifies a row of the simulation grid.

SCALE-FACTOR: is a scale factor used to modify computed vector lengths.
When positive, the vector lengths are increased by multiplying by the
SCALE-FACTOR. When negative, the vector lengths are computed by
multiplying the vector lengths by the smallest power of ten necessary to
make the shortest vector length greater than one, taking the logarithm
of the product, and multiplying the result by the absolute value of the
SCALE-FACTOR.

SP: is a two-digit integer that specifies a stress-period number.

THICK: is a 70-column field used for entering as many as seven layer
thicknesses according to the Fortran format (7F10.0). The THIC command
should be repeated as many times as necessary to enter a thickness value
for every layer in the simulation grid. Thicknesses are used only for
determining the coordinates for flow vectors displayed on a plane that
slices more than one layer of the simulation grid.

TITLE: is a 75-character field used for altering the fourth title line.

217

[

TS: is a two-digit integer that specified a time-step number.

TYPE: is a character (either "R" or "I") ithat specifies whether real or
integer data are being read. TYPE id ignored when reserved data set
names are used.

UNIT: is a two-digit integer identifying the Fortran unit number that has
been opened by job control statements that precede the running of the
MMSP program. The unit number corresponds to a file that will be read
or written by the MMSP program.

218

